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Abstract: We introduce a generating-function framework for analyzing the no-feedback card-guessing
game after k Gilbert–Shannon–Reeds riffle shuffles. We show that the distribution of the card appearing
in position i can be expressed as a structured mixture of 2k tractable components, each corresponding
to a sum of independent Bernoulli trials. From this decomposition, we derive an explicit closed-
form expression for the probability generating function, represented as a product of binomial-type
polynomials with a clear and systematic structure, valid for any number of cards n and any number of
shuffles k. This formulation replaces recursive convolutions with a single analytic expression, enabling
efficient computation and revealing the combinatorial–probabilistic structure underlying riffle shuffles.
Beyond exact evaluation, the framework connects optimal no-feedback strategies with the generating
functions and suggests asymptotic behavior in both the fixed-k, large-n and fixed-n, large-k regimes.
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1. Background and formulation

Over the past few decades, the card guessing game has been the subject of extensive study, with
attention given to optimal strategies, worst-case performance, and the distribution of correct guesses [1,
2]. A fundamental feature of the game is the use of riffle shuffles, which are widely employed in
practical settings, such as casinos and poker games, where multiple iterations are used to approximate
randomness. The classical result of Bayer and Diaconis [3] established that after seven riffle shuffles,
the positions of all 52 cards are nearly uniformly distributed.

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20251075


24258

Throughout this work we adopt the Gilbert–Shannon–Reeds (GSR) model of riffle shuffling, in
which the deck is cut into two piles and then interleaved with probabilities proportional to pile sizes [3].
This is the standard probabilistic model of riffle shuffles used in modern analyses. The game admits
several variants, depending on whether feedback is provided by the dealer. In the complete feedback
version, analogous to blackjack, the dealer reveals each card after a guess, allowing the player to adapt
their strategy dynamically. In the no-feedback version, which is the focus of this work, the player must
commit to a complete sequence of guesses in advance. Repetition of guesses across different positions
is permitted to increase the likelihood of correct matches.

The variant studied in this paper is summarized as follows:

Objective:
Maximize the number of correct guesses of the card values.

Rules:
- The game begins with a deck of n cards, initially ordered as 1, 2, 3, . . . , n.
- The dealer performs k riffle shuffles.

- The player then makes one guess for each position in the deck.

- No feedback is provided during or after the guessing phase.

- The game concludes after all n positions have been guessed.

In this no–feedback setting, the expected number of correct guesses is the sum of the per–
position probabilities of a correct match. By linearity of expectation, these terms can be maximized
independently, so the optimal strategy is simply to guess, at each position, the card value with the
highest marginal probability. The central contribution of this paper is to provide explicit formulas for
these probabilities through a generating function decomposition.

Our contribution: Extending beyond prior literature

Related work on the complete-feedback version of the game was given by Krityakierne and
Thanatipanonda [4], who developed a generating-function framework for analyzing the moments of
correct guesses after a single riffle shuffle. In 1998, Ciucu [5] analyzed the no-feedback version
of the card-guessing game under riffle shuffles for large k, establishing the optimal strategy when
k > 2 log2(n) via spectral methods on the transition matrix. Subsequent work continued along this
line. Krityakierne et al. [6] analyzed the one–shuffle, no–feedback game under Ciucu’s one–shuffle
optimal strategy, constructing counting generating functions with efficient recurrences and deriving an
exact closed form for the expected number of correct guesses together with higher–moment formulas.
Recently, Kuba and Panholzer [7], building on the work of Krityakierne et al. [6], established a limit
law for the number of correct guesses in the one-shuffle, no-feedback setting.

In contrast, the present paper introduces a new generating-function framework that applies to
arbitrary n and any number k of riffle shuffles in the no-feedback setting. Whereas previous studies used
generating functions to derive moments of the number of correct guesses [4, 6], our approach reveals
the underlying combinatorial–probabilistic structure of the position distribution and unifies the shuffle
process within a single analytic formulation. To our knowledge, it provides the first comprehensive
description of the position distribution after finitely many shuffles, yielding both exact formulas and
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asymptotic insight. In a broader context, generating functions are classical tools in enumerative
combinatorics and discrete probability [8, 9], and our formulation leverages their expressive power
to connect combinatorial structure with probabilistic behavior. This formulation not only clarifies the
underlying structure of riffle shuffles but also leads to concrete applications, including asymptotically
optimal guessing strategies and connections with classical mixing-threshold results.

2. Preliminaries: Single riffle shuffle (k = 1)

Consider a single riffle shuffle applied to a deck of n cards. In the GSR model [3], the deck is
first cut into two packets according to the binomial distribution, and then the packets are interleaved
by sequentially dropping the next card from either packet with probabilities proportional to the packet
sizes. An immediate question arises: Which permutations can result from such a shuffle and with what
probabilities?

For example, when n = 1, the only resulting permutation is {1}, but it occurs with multiplicity 2,
corresponding to the interleavings of ({1}, ∅) and (∅, {1}). In general, there are 2n possible outcomes,
among which n + 1 are identity permutations (those with a single increasing subsequence), while the
remaining permutations each exhibit two increasing subsequences and occur with multiplicity one.
Several examples are visualized in Figure 1, where the color of each cell indicates the most likely card
value at the corresponding position.

Figure 1. All possible permutations obtained from a single riffle shuffle for n = 1, 2, 3, 4. For
each position, the color encodes the most likely card value.

2.1. Frequency and probability matrices

Let M = (mi, j) denote the frequency matrix, where mi, j represents the number of occurrences of
card j appearing in position i across all 2n possible shuffles. Each row i corresponds to a deck position,
while each column j indexes the card value.
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For instance, when n = 4, the matrix M is given by

M =


9 3 3 1
4 6 4 2
2 4 6 4
1 3 3 9

 .
2.2. Probability matrix for k = 1

Define the probability matrix P(1) := M/2n, whose entries are denoted a(i, j, n) := mi, j/2n. Then,
a(i, j, n) represents the probability that card j appears in position i after a single riffle shuffle. It is
known that this quantity admits the following closed-form expression:

a(i, j, n) =
1
2i

(
i − 1
j − 1

)
+

1
2n−i+1

(
n − i
j − i

)
. (2.1)

This identity was established in [5]. Note that the first term is nonzero when i ≥ j, while the second
term is nonzero when j ≥ i.

The matrix P(1) is doubly stochastic: the sums of each row and each column equal 1. The row sums
follow directly from the binomial theorem, since

n∑
j=1

a(i, j, n) =
1
2i

i∑
j=1

(
i − 1
j − 1

)
+

1
2n−i+1

n∑
j=i

(
n − i
j − i

)
=

1
2
+

1
2
= 1.

The column sums are less immediate, but also satisfy

n∑
i=1

a(i, j, n) =
n∑

i= j

1
2i

(
i − 1
j − 1

)
+

j∑
i=1

1
2n−i+1

(
n − i
j − i

)
= 1.

To establish this, we apply induction on j and n, with j ≤ n, with base cases j = 1 and j = n.
Additionally, P(1) exhibits a symmetry property:

a(i, j, n) = a(n + 1 − i, n + 1 − j, n), (2.2)

a fact already observed in Ciucu [5].

2.3. Probability matrix for general k-shuffle: P(k)

We now consider the case where the riffle shuffle is applied k times. Let a(k)
i, j denote the probability

that card j occupies position i after k independent riffle shuffles. We define the matrix P(k) =
(
a(k)

i, j

)
.

As noted by Ciucu [5], the transpose
(
P(1)

)⊺
acts as a transition matrix for the Markov chain on

permutations induced by the shuffle. Therefore, the matrix power relation holds:

a(k)
i, j =

n∑
s1=1

a(1)
i,s1

a(k−1)
s1, j
= · · · =

n∑
s1=1

· · ·

n∑
sk−1=1

a(1)
i,s1

a(1)
s1,s2
· · · a(1)

sk−1, j
. (2.3)

This recursive structure underlies the key decomposition and generating function representations
developed in the subsequent sections.
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3. Main results

3.1. Mixture decomposition and generating functions for Ji

Fix a position i ∈ {1, . . . , n}, and consider the i-th row of the probability matrix P(k). We define the
discrete random variable Ji, representing the card number appearing in position i after k riffle shuffles.
Its probability mass function is given by

P(Ji = j) = a(k)
i, j , j = 1, . . . , n.

Figure 2 (left) shows the p.m.f. of J60 for n = 500 and k = 3. The shape of the distribution
suggests an underlying mixture structure. This observation motivates a decomposition of the p.m.f. into
structured components, which we now formalize.

Figure 2. Example with k = 3, n = 500, i = 60: (a) the p.m.f. of J60, that is,
(
a(3)

60, j

)n

j=1
; (b)

the mixture components pL of the decomposition of J60.

Decomposability of a(k)
i, j

We begin with the case k = 1, where the transition probability a(1)
i, j admits a closed-form expression

that splits naturally into two terms:

a(1)
i, j =

1
2

[
b(1)

i, j + b(2)
i, j

]
, (3.1)

where

b(1)
i, j :=

1
2i−1

(
i − 1
j − 1

)
, b(2)

i, j :=
1

2n−i

(
n − i
j − i

)
. (3.2)

For general k ≥ 1, the term a(k)
i, j can be recursively decomposed into a mixture of 2k components,

each corresponding to a binary path through a sequence of b(1) and b(2) matrices.

Proposition 3.1 (Mixture decomposition of Ji). For any k ≥ 1, the expression for a(k)
i, j in (2.3) satisfies

a(k)
i, j =

1
2k

∑
L

pL( j), (3.3)

where the sum is over all binary lists L = (L[1], . . . , L[k]) ∈ {1, 2}k. Each component pL( j) is defined
by

pL( j) :=
n∑

s1=1

· · ·

n∑
sk−1=1

b(L[1])
i,s1

b(L[2])
s1,s2
· · · b(L[k])

sk−1, j
. (3.4)
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Proof. Immediate by recursively applying the base decomposition (3.1) within the convolution
structure of (2.3). □

Examples
When k = 2, the mixture consists of four components:

a(2)
i, j =

1
4

[
p[1,1]( j) + p[2,1]( j) + p[1,2]( j) + p[2,2]( j)

]
,

where each component is expressed as

p[1,1]( j) =
n∑

s=1

b(1)
i,s b(1)

s, j =

n∑
s=1

1
2i−1

(
i − 1
s − 1

)
1

2s−1

(
s − 1
j − 1

)
,

p[2,1]( j) =
n∑

s=1

b(2)
i,s b(1)

s, j =

n∑
s=1

1
2n−i

(
n − i
s − i

)
1

2s−1

(
s − 1
j − 1

)
,

p[1,2]( j) =
n∑

s=1

b(1)
i,s b(2)

s, j =

n∑
s=1

1
2i−1

(
i − 1
s − 1

)
1

2n−s

(
n − s
j − s

)
,

p[2,2]( j) =
n∑

s=1

b(2)
i,s b(2)

s, j =

n∑
s=1

1
2n−i

(
n − i
s − i

)
1

2n−s

(
n − s
j − s

)
.

Likewise, for k = 3, a sample list L = [1, 1, 2] gives

p[1,1,2]( j) =
n∑

s1=1

n∑
s2=1

b(1)
i,s1

b(1)
s1,s2

b(2)
s2, j
=

n∑
s1=1

n∑
s2=1

1
2i−1

(
i − 1
s1 − 1

)
1

2s1−1

(
s1 − 1
s2 − 1

)
1

2n−s2

(
n − s2

j − s2

)
.

Visualization of decomposition
The right panel of Figure 2 displays the individual components pL of the mixture decomposition

for the case k = 3, n = 500, and i = 60. Each curve corresponds to one of the 23 = 8 possible binary
list indices L ∈ {1, 2}3, showing the contribution of that component to the total distribution of J60.
These components exhibit distinct shapes and modes, further highlighting the structured nature of the
decomposition and motivating the generating function approach that follows.

Generating functions for each component pL

To handle the summation structure more systematically, we define the probability generating
function (p.g.f.) of each pL as

FL(x) :=
n∑

j=1

pL( j) x j =

n∑
j=1

n∑
s1=1

· · ·

n∑
sk−1=1

b(L[1])
i,s1

b(L[2])
s1,s2
· · · b(L[k])

sk−1, j
· x j. (3.5)

Proposition 3.2. For each list L ∈ {1, 2}k, the function FL(x) is a valid probability generating function.

Proof. By construction, the coefficients pL( j) are non-negative and sum to 1. Hence, FL(1) = 1 and
the result follows. □
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3.2. Structured form of FL(x) via generating functions

We now examine the structure of the generating function FL(x) defined in (3.5), by reorganizing the
summation (i.e., moving the summation over j innermost) and evaluating the sums sequentially from
the inside out. This process yields a compact, tractable expression for FL(x) for all k ≥ 1. We begin
with illustrative examples.

Examples

• For k = 0,
F[ ](x) = xi.

This reflects the trivial case with no shuffling: the card in position i must be card i with
probability 1.

• For k = 1,

F[1](x) = (0x + 1)n−i

(
x
2
+

1
2

)i−1

x, F[2](x) =
(

x
2
+

1
2

)n−i

(x + 0)i−1x.

• For k = 2,

F[1,1](x) = (0x + 1)n−i

(
x
4
+

3
4

)i−1

x, F[2,1](x) =
(

x
4
+

3
4

)n−i ( x
2
+

1
2

)i−1

x,

F[1,2](x) =
(

x
2
+

1
2

)n−i (3x
4
+

1
4

)i−1

x, F[2,2](x) =
(
3x
4
+

1
4

)n−i

(x + 0)i−1 x.

To encapsulate the general form, we define the following notation:

g(a, b) := [ax + (1 − a)]n−i · [bx + (1 − b)]i−1
· x. (3.6)

Remark 3.1. The function g(a, b) is the probability generating function of the random variable

1 +
n−i∑
j=1

X j +

i−1∑
j=1

Y j,

where X j ∼ Bern(a), Y j ∼ Bern(b), and all variables are independent.

With this notation, the expressions above become

F[ ](x) = g(0, 1), F[1](x) = g
(
0, 1

2

)
, F[2](x) = g

(
1
2 , 1

)
.

Recursive structure and index ordering
The bisection tree in Figure 3 encodes the recursive structure of the list indices Lt and their

associated generating functions. The function FLt(x) for a given k is defined recursively by splitting
the arguments of g(a, b) at each step:

g(a, b) 7→

g
(
a, a+b

2

)
, left child,

g
(

a+b
2 , b

)
, right child.
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This tree induces a natural indexing t 7→ Lt, which we use in the statement of the main theorem.

Figure 3. A bisection tree structure. Each node at depth k corresponds to the function FLt(x)
for t = 0, 1, . . . , 2k − 1.

Theorem 3.3 (Generating function FLt(x)). For any k ≥ 1, and list indices L0, L1, . . . , L2k−1 defined via
the bisection tree construction, we have

FLt(x) = g
(

t
2k ,

t + 1
2k

)
, for t = 0, 1, . . . , 2k − 1.

To prove the theorem, we require the following lemma.

Lemma 3.4. Assume f (i) = An−iBi−1x, where A = ax + (1 − a) and B = bx + (1 − b). Then,

T1( f ) :=
i∑

s=1

1
2i−1

(
i − 1
s − 1

)
f (s) = An−i

(A + B
2

)i−1

x;

T2( f ) :=
n∑

s=i

1
2n−i

(
n − i
s − i

)
f (s) =

(A + B
2

)n−i

Bi−1x.

Proof. We first recall two identities derived from the binomial theorem:

i∑
s=1

1
2i−1

(
i − 1
s − 1

)
xs−1 =

(
x
2
+

1
2

)i−1

,

and
n∑

s=i

1
2n−i

(
n − i
s − i

)
xs−1 =

(
x
2
+

1
2

)n−i

xi−1.

We now proceed with evaluating T1( f ) using the definition f (s) = An−sBs−1x. Rewriting,

T1( f ) =
i∑

s=1

1
2i−1

(
i − 1
s − 1

)
An−sBs−1x = An−1x

i∑
s=1

1
2i−1

(
i − 1
s − 1

) (B
A

)s−1
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= An−1x
 B

A + 1
2

i−1

(by binomial identity above)

= An−1x
(A + B

2A

)i−1

= An−i
(A + B

2

)i−1

x.

The proof of the claim for T2( f ) follows by an analogous argument. □

Proof of Theorem 3.3. The proof proceeds by induction on k = |L|. The base case k = 0 is clear, since
F[ ](x) = xi = g(0, 1).

For the inductive step, suppose FL′(x) = g
(

t
2k−1 ,

t+1
2k−1

)
, and let L = [lk, L′]. By Lemma 3.4, if lk = 1,

then

FL(x) = T1 (FL′(x)) = g
(

2t
2k ,

2t + 1
2k

)
,

and if lk = 2, then

FL(x) = T2 (FL′(x)) = g
(
2t + 1

2k ,
2t + 2

2k

)
.

□

Remark 3.2. While a complete combinatorial interpretation of FL(x) remains open, its algebraic form
suggests that it corresponds to the p.g.f. of a shifted sum of independent Bernoulli trials, partitioned
across two blocks. Each coefficient of x j corresponds to the total weight of choosing j − 1 successes
under a specific interleaving structure indexed by L. Identifying a concrete combinatorial object or
bijection that captures this behavior is an open problem.

Corollary 3.5. Fix i, n, k. Let Ji denote the random variable representing the card in position i after k
riffle shuffles. Define its probability generating function as

Gi(x) =
n∑

j=1

P(Ji = j)x j.

Then, the p.g.f. of Ji is the sum of the product of polynomials given by

Gi(x) =
1
2k

2k−1∑
t=0

( t
2k x + 1 −

t
2k

)n−i
(
t + 1

2k x + 1 −
t + 1

2k

)i−1

x. (3.7)

Proof.

Gi(x) =
n∑

j=1

a(k)
i, j x j =

1
2k

2k−1∑
t=0

n∑
j=1

pLt( j)x j =
1
2k

2k−1∑
t=0

FLt(x).

The second equality follows from (3.3), and the result is a consequence of Theorem 3.3. □
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4. Conclusions, applications and outlook

Implications for card guessing
We developed a generating-function framework for analyzing the no-feedback card-guessing game

after k riffle shuffles. By decomposing the marginal distribution of card positions into a mixture of 2k

structured components, we obtained an explicit and interpretable probability generating function

Gi(x) =
1
2k

2k−1∑
t=0

(
t

2k x + 1 − t
2k

) n−i( t+1
2k x + 1 − t+1

2k

) i−1
x,

thereby replacing the (k − 1)-fold convolution in (2.3) with a single summation. Each summand is
the p.g.f. of a sum of independent Bernoulli trials (Remark 3.1), so that Pr(Ji = j)—the probability
that card number j occupies position i—is an average of 2k explicitly parameterized component
distributions.

For fixed k and large n, Figure 4 shows that as n increases from 50 to 400, the component
distributions separate more clearly. In particular, for large n, Pr(Ji = j)—the coefficient of x j in
Gi(x)—is dominated by a single summand rather than by the full mixture. This observation motivates
Conjecture 4.1, providing a tractable asymptotic description in the regime of fixed k and large n (see
Application A.1). By contrast, when k is large compared to n, the averaging structure leads to behavior
consistent with the mixing threshold established in Ciucu’s theorem (see Application A.2).

Figure 4. Overlay of the eight component p.m.f.s for k = 3 and i = 15, with n = 50 (top)
and n = 400 (bottom). The red curve shows the sum of the 23 components of Gi(x), whose
height at position j equals 23 times the coefficient of x j.

A.1 Asymptotically optimal guessing for fixed k, large n. When n is large relative to k, our explicit
form of Gi(x) offers a route toward establishing the optimal no-feedback guessing strategy.

AIMS Mathematics Volume 10, Issue 10, 24257–24269.
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Conjecture 4.1 (Asymptotically optimal guessing for fixed k, large n). For any fixed k ≥ 1, there
exists n(k) such that for all n ≥ n(k), the optimal no-feedback guess j∗i at position i ∈ {1, . . . , n} is

if i ≤
⌊

n+1
2

⌋
: j∗i =

⌊
i

2k

⌋
+ 1,

if i ≥
⌈

n+1
2

⌉
: j∗i =

⌊
(n − i + 1)

(
1 − 1

2k

)⌋
+ i.

Supporting rationale. Based on our numerical results, for each i, Pr(Ji = j) is sharply peaked around
a dominant Bernoulli-sum component with parameters

( t
2k ,

t+1
2k

)
. Maximizing this term yields the

offsets in Conjecture 4.1, which remain consistent across all i for large n. A rigorous proof is left as
an open problem.

A.2 Asymptotically optimal guessing for fixed n, large k. The mixture structure suggests an alternative
proof of Ciucu’s theorem.

Theorem 1.1 (Ciucu [5]). For k ≥ 2 log2(2n) + 1, the optimal no-feedback guessing strategy after
k riffle shuffles of a deck of 2n cards is to guess 1 at the first n positions and 2n at the remaining n
positions.

Connections to existing work on riffle shuffles and dynamical structure
Riffle shuffling is closely connected to the theory of carries and to Holte’s Amazing Matrix [10],

building on earlier work by Diaconis, McGrath, and Pitman [11] and later developed by Diaconis and
Fulman [12]. In the GSR model of a b-shuffle, the deck is cut into b packets according to a multinomial
law and then interleaved at random. Holte’s matrix Pb governs descent statistics of a permutation after
one b-shuffle, while another standard matrix Qb tracks the position of a single marked card. In the case
b = 2, our probability matrix for one shuffle (2.1) satisfies

P(1)(i, j) = Q2( j, i),

so that P(1) = Q⊺2 , and hence P(k) = (Qk
2)⊺. Thus, P(k) and Qk

2 share the same spectrum. Although
one can exploit the diagonalization of Q2 to analyze P(k), the resulting formulas are less transparent
than the product-form generating functions of Corollary 3.5, which recast the shuffle process as a
simple mixture structure and make both exact computation and asymptotic analysis more accessible.
The resulting 2k-component decomposition mirrors the binary expansion underlying the deterministic
perfect shuffle. In this setting, the binary skeleton (Figure 3) corresponds to the doubling map x 7→ 2x
(mod 1) studied by Lalley [13], with randomness superimposed to produce a probabilistic analogue
of the deterministic dynamics. It also aligns with structures observed in random walks on groups and
Markov chains on permutations [14, 15].

Concluding outlook
In addition to the two applications discussed above, the recursive decomposition and closed-form

p.g.f.s developed here are not inherently limited to the GSR riffle shuffle. They may also extend to other
shuffling schemes or stochastic processes on permutations, such as biased riffle shuffles and top-in-at-
random procedures, whenever the one-shuffle distribution admits a tractable decomposition. A natural
future direction is to identify the class of permutation Markov chains whose transition kernels possess
similar mixture representations, thereby extending the reach of this framework beyond shuffling to
broader combinatorial and probabilistic systems.
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