

Mahidol University International College

Final Examination Trimester 2/ 2019-2020

Course/Code: General Mathematics II/ICMA 212

Instructor: Aj. Thotsaporn THANATIPANONDA

Date: 23 March 2020

Time: 10:00 - 11:50pm

Total pages: Exam 7 pages

Directions

- 1. There are 6 questions. Total score is 55 points which scale to 35% of total grade.
- 2. Students are allowed to use/consult a calculator, notes and old homeworks.
- 3. Show a reasonable amount of work. Simplify as much as you can. There will be no credit for an answer alone.
- 4. Students found consulting with other people or internet during the examination will be penalized according to the university's examination policy.

1. a) Sketch the graph of the function

$$f(x,y) = \sqrt{16 - x^2 - y^2}.$$

Describe the domain and range.

(3 points)

b) Compute the limit

$$\lim_{(x,y)\to(0,0)} \frac{2x}{\sqrt{x^2+y^2}}.$$

or prove that it does not exist.

(3 points)

c) Determine the set of points at which the function

$$f(x,y) = \frac{x - y}{1 + x^2 + y^2}$$

is continuous.

(3 points)

- 2. Let $f(x,y) = \sqrt{2x + 3y}$.
 - a) Compute f_x and f_y . (3 points)

b) Find the slope of the surface z=f(x,y) in the x-direction at the point (5,2). (3 points)

3. Let L(x,y) denote the local linear approximation to

$$f(x,y) = \ln\left(x - 3y\right)$$

at the point (7,2). Use L(x,y) to approximate f(6.9,2.06). Compare your answer with the exact value from the calculator. (8 points)

4. a) Use the chain rule to find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ if

$$f(x,y) = \frac{x}{y}$$
, $x = 2\sin u$, $y = 3\cos v$.

Express your answer in terms of u and v.

(5 points)

b) Given z=f(x,y). Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^2+y^2+z^2=3xyz.$

5. a) Find a unit vector in the direction in which

$$f(x,y) = 3x - \ln y$$

increases most rapidly at P(2,4), and find the rate of change in that direction. (6 points)

b) Find an equation for the tangent plane to the surface

$$z = 4x^3y^2 + 2y - 2$$

at the point P = (1, -2, 10). (6 points)

. Find all the local maximum and minimum values and saddle point(s) of the function

$$f(x,y) = (1+xy)(x+y).$$

(10 points)