Homework 3

Mutivariable Calculus

Due on Wednesday, February 12

11.5 Parametric Equations of Lines

- 1. Find the parametric equations for the line that passes through the points (6,3,-3) and (4,-3,0).
- 2. Find the parametric equations for the line that passes through the origin and parallel to the line x = 2t, y = 1 t, z = 4 + 3t.

11.6 Planes

- 3. Find the point at which the line with parametric equations x=2+3t, y=-4t, z=5+t intersects the plane 4x+5y-2z=18.
- 4. Find the equation of the plane that contains the line

$$x = 3 + 2t$$
, $y = t$, $z = 8 - t$

and is parallel to the plane 2x + 4y + 8z = 17.

5. Find an equation of the plane that passes through (-1,4,-3) and is perpendicular to the line

$$x = 2 + t$$
, $y = -3 + 3t$, $z = -t$.

- 6. Find an equation of the plane that passes through the points P = (1, 3, 2), Q = (3, -1, 6) and R = (5, 2, 0).
- 7. Find the formula for the shortest distance from the point (x_0, y_0) to the straight line ax + by = c where a, b, c are constants.

12.1 Vector Functions and Space Curves

- 8. Sketch the line segment represented by each vector equation.
 - a) $\mathbf{r} = (1 t)(\mathbf{i} + \mathbf{j}) + t(\mathbf{i} \mathbf{j}); 0 \le t \le 1$
 - b) $\mathbf{r}(t) = \langle t^4 + 1, t \rangle$.

12.2 Calculus of Vector Functions

- 9. Given $\mathbf{r}(t) = (1+t)\mathbf{i} + t^2\mathbf{j}$.
 - a) Sketch the plane curve of $\mathbf{r}(t)$.
 - b) Find $\mathbf{r}'(t)$.
 - c) Sketch the position of vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}'(t)$ for t=1.
- 10. Evaluate the integral

$$\int (e^t \mathbf{i} + 2t \mathbf{j} + \ln t \mathbf{k}) \, dt.$$

11. Find $\mathbf{r}(t)$ if $\mathbf{r}'(t) = t^2 \mathbf{i} + 4t^3 \mathbf{j} - t^2 \mathbf{k}$ and $\mathbf{r}(0) = \mathbf{k}$.