Homework 5

Mutivariable Calculus

Due on Monday, March 23

13.3 Partial Derivatives

- 1. If $f(x,y) = 9 4x^2 y^2$, find $\lim_{\Delta x \to 0} \frac{f(2 + \Delta x, 1) f(2, 1)}{\Delta x}$.
- 2. Evaluate $\frac{\partial^{100}}{\partial x^{95}\partial y^2\partial x^3}(ye^xx+\cos(x))$.
- 3. If z = f(x, y) with the relation $xy^2z^3 + x^3y^2z + 1 = x + y + z$. Find $\frac{\partial z}{\partial x}$ at (1, 1, 1).

13.4 Differentiability, Differentials, and Local Linearity

- 4. Find the linearization L(x,y) of $f(x,y) = x\sqrt{y}$ at (1,4).
- 5. Use the linearization of $f(x,y) = \sqrt{x+2y}$ to approximate f(3.01, 2.96).
- 6. Find the differential of $z = y \cos(xy)$.
- 7. If $z = 5x^2 + y^2$ and (x, y) changes from (1, 2) to (1.05, 2.1), find the value of dz.

13.5 The Chain Rule

- 8. Let $z = x \sin(xy)$, and suppose that $x = e^{t^2}$, y = 2t. Use the chain rule to compute $\frac{dz}{dt}$.
- 9. Use the chain rule to find $\partial z/\partial s$ and $\partial z/\partial t$.

$$z = e^{xy}, \quad x = s + 2t, \quad y = s/t.$$

10. Use implicit differentiation to find dy/dx of

$$\cos(x - y) = xe^y.$$

13.6 Directional Derivative and Gradient Vector

11. Find the directional derivative of the function

$$f(x,y) = \ln\left(x^2 + y^2\right)$$

at the point (2,1) in the direction of the vector $\mathbf{u} = \langle -1, 2 \rangle$.

- 12. Find the maximum rate of change of $f(x,y) = y^2/x$ at the point (2,4) and the direction in which it occurs.
- 13. Find the directions in which the directional derivative of $f(x,y) = x^2 + \sin xy$ at the point (1,0) has the value 1.