Chapter11 Three-dimensional space, Vectors

11.1 Rectangular Coordinates in 3-Space; Spheres; Cylindrical Surfaces

Rectangular Coordinate System

Some demonstration on 1-space, 2-space and 3-space. 0-dimension: point and a point on the line 1-dimension: line on a plane 2-dimension: surface on a 3-dimensional space.

Three Dimensional Space

Midpoint between $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$.

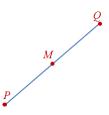


Figure 1: Midpoint between *P* and *Q* (credit: http://proofsfromthebook.com/)

Distance from the origin to the point $P(x_0, y_0, z_0)$:

$$d = \sqrt{x_0^2 + y_0^2 + z_0^2}$$



Figure 2: Distance from the origin to the point (credit: quora.com)

Distance from P_0 to P_1 :

$$d = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}.$$

Example: Find the distance d between the points (1, -2, 4) and (-3, -6, -3).

Some Surfaces

- 1. Plane: x = 0 or x = 3 or z = 5, General form: Ax + By + Cz = D.
- 2. Cylindrical Surface: $x^2 = y + 3$, $x^2 + z^2 = 5$.
- 3. Sphere: $(x-1)^2 + (y+2)^2 + (z+6)^2 = 3^2.$ General form: $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = d^2.$

11.2 Vectors

Unlike the numbers, vectors have both length and direction (with no actual initial point). We use the notation $\mathbf{i}, \mathbf{j}, \mathbf{k}$ as a basis for the vector in 3-dimensional space. \mathbf{i} is a unit vector in the positive x-direction. \mathbf{j} is a unit vector in the positive y-direction. \mathbf{k} is a unit vector in the positive z-direction.

Some examples of vectors in 3-dimensions are $\mathbf{v} = 5\mathbf{i} + 3\mathbf{j}$, $\mathbf{w} = -2\mathbf{j}$, $\mathbf{0} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$.

Vector can be written as a linear combination of \mathbf{i}, \mathbf{j} and \mathbf{k} or in a bracket notation i.e.

$$\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k} = \langle a, b, c \rangle.$$

Vector from $P(x_1, y_1, z_1)$ to $Q(x_2, y_2, z_2)$ is $\langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$.

Arithmetic operations on Vectors

If $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$, then

$$\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle,$$

$$\mathbf{v} - \mathbf{w} = \langle v_1 - w_1, v_2 - w_2, v_3 - w_3 \rangle,$$

$$k\mathbf{v} = \langle kv_1, kv_2, kv_3 \rangle.$$

<u>Rules of Vector Arithmetic</u>

1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v},$ 2. $\mathbf{v} + (-\mathbf{v}) = 0,$ 3. $\mathbf{w} = c\mathbf{v}, \ c \neq 0 \iff \mathbf{w}//\mathbf{v}.$

Norm of a vector

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

- 1. $||c\mathbf{v}|| = c||\mathbf{v}||.$
- 2. Unit vector (vector of length one) of \mathbf{v} is $\frac{\mathbf{v}}{\|\mathbf{v}\|}$.

Examples:

- 1. Find the vector of length 2 that makes an angle of $\frac{\pi}{4}$ with the positive x-axis.
- 2. Find the angle that the vector $v = -\sqrt{3}\mathbf{i} + \mathbf{j}$ makes with the positive x-axis.

11.3 Dot product; Projections

Definition. Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ be vectors in 2d-space. Then $\mathbf{u} \cdot \mathbf{v}$ is defined as

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

Similarly if $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ then

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Example: $\mathbf{u} = \langle 1, 2, 3 \rangle, \mathbf{v} = \langle -3, -7, -1 \rangle$ then $\mathbf{u} \cdot \mathbf{v} = -3 - 14 - 3 = -20$.

Properties of Dot Product

- a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- b) $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$
- c) $\mathbf{0} \cdot \mathbf{v} = \mathbf{0}$.
- d) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}.$

Theorem 1. Let θ be the angle between \boldsymbol{u} and \boldsymbol{v} then

$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}.$$

Proof. Consider $\|\mathbf{v} - \mathbf{u}\|^2$, first by applying the law of cosines, $c^2 = a^2 + b^2 - 2ab \cos \theta$. And second by applying property 4 of dot product.

Example: Find the angle between the vector, $\mathbf{u} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and

- a) $\mathbf{v} = 3\mathbf{i} \mathbf{k}$
- b) $\mathbf{w} = -2\mathbf{i} 4\mathbf{j} + 2\mathbf{k}$

Orthogonal Vector

The (non-zero) vector \mathbf{u} and \mathbf{v} are orthogonal $(\theta = \frac{\pi}{2}) \iff \mathbf{u} \cdot \mathbf{v} = 0.$