Chapter 11 Three-dimensional space, Vectors

11.5 Parametric Equations of Lines

Figure 1: Line in 3-dimensional space (credit: brilliant.org)

Line can be written as vector equation form or parametric equation form.

Vector Equation: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$, $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$.

Parametric Equation: $L: x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$.

Examples:

- 1. Find a vector equation and parametric equations for the line that passes through the point (5,1,3) and is parallel to the vector $\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$.
- 2. Find a parametric equations for the line that passes through the point (0, -2, 1) and (1, 1, 1).

Parallel lines:

Given $\mathbf{r}_a = \mathbf{r}_0 + t\mathbf{v}_0$ and $\mathbf{r}_b = \mathbf{r}_1 + s\mathbf{v}_1$. Then $\mathbf{r}_a//\mathbf{r}_b \iff \mathbf{v}_0//\mathbf{v}_1 \iff \mathbf{v}_0 = c\mathbf{v}_1$ for some constant c.

Intersecting lines: Find the intersecting point between two lines: $\mathbf{r}_1 = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$ and $\mathbf{r}_2 = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle$.

Solution: set up three equations and solve for s and t. $x:1+t=2-s, \ y:1-t=s \ z:2t=2.$

Skew lines: Skew lines are two lines that do not intersect and are not parallel.

1

Remarks

1. Another form for Lines with no extra variable t. Given $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$.

Symmetric Equation:
$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$
.

2. There is no unique way to write the straight line since variable t, $-\infty < t < \infty$ can be shifted by any constant.

11.6 Planes

Figure 2: Plane in 3-dimensional space (credit: mathworld.wolfram.com)

A vector \mathbf{n} perpendicular (orthogonal) to a plane is called *normal vector*. Therefore any \mathbf{n} perpendicular to any vector $\mathbf{r} - \mathbf{r}_0$ where \mathbf{r} and \mathbf{r}_0 are any two points on the plane.

The equation of plane is

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

which can also be written in the form

$$ax + by + cz = d$$
, $a, b, c, d \in \mathbb{R}$.

given that $\mathbf{n} = \langle a, b, c \rangle$.

As long as the problem gives \mathbf{n} and point \mathbf{r}_0 , we can find the equation of the plane.

Example 1: Let $\mathbf{n} = \langle 2, -2, 1 \rangle$ and $\mathbf{r}_0 = \langle -3, -4, 5 \rangle$. Find the equation of the plane.

Solution: From
$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$
, we have $\langle 2, -2, 1 \rangle \cdot \langle x + 3, y + 4, z - 5 \rangle = 0$ which simplify to $2x - 2y + z = 7$.

Example 2: Find an equation of the plane that passes through the origin and parallel to the plane 2x - y + 3z = 1.

Solution: Here $\mathbf{n} = \langle 2, -1, 3 \rangle$ and $\mathbf{r}_0 = \langle 0, 0, 0 \rangle$. Therefore, from $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$, the equation of the plane is $\langle 2, -1, 3 \rangle \cdot \langle x - 0, y - 0, z - 0 \rangle = 0$ which simplify to 2x - y + 3z = 0.

If the two lines on the plane are given, we can also find the equation of the plane.

Example 3:

a) Find the point which the given lines intersect:

$$\mathbf{r}_1 = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$$

and

$$\mathbf{r}_2 = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle.$$

b) Find an equation of the plane that contains these lines.

Solution: a) Solve t and s from 1+t=2-s, 1-t=-s and 2t=2. The solution is t=1, s=0. After plug t or s back, we know the intersection point is $\langle 2, 0, 2 \rangle$.

b) $\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2 = \langle 1, -1, 2 \rangle \times \langle -1, 1, 0 \rangle = \langle -2, -2, 0 \rangle$. Any point on the plane for \mathbf{r}_0 would make the same equation. Here we pick $\mathbf{r}_0 = \langle 2, 0, 2 \rangle$. The equation of the plane is

$$0 = \mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = \langle -2, -2, 0 \rangle \cdot \langle x - 2, y - 0, z - 2 \rangle = -x + 2 - y.$$

It worths mentioning that given 3 points of the planes, we can also find the equation of the plane. We find the \mathbf{v}_1 and \mathbf{v}_2 from these points, and then $\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2$. We could pick any point to be \mathbf{r}_0 .

The following theorem gives the shortest distance from a point to the plane.

Theorem 1. The distance D between a point (x_0, y_0, z_0) and the plane ax + by + cz - d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Figure 3: Shortest distance from a point to the plane (credit: math.stackexchange.com)

Proof. Let $R = (x_0, y_0, z_0)$ be any point on the plane and $\mathbf{v} = \langle E - R \rangle$. Note that the normal vector \mathbf{n} is $\langle a, b, c \rangle$ as usual. It follows that $|\mathbf{v} \cdot \mathbf{n}| = ||\mathbf{v}|| ||\mathbf{n}|| |\cos \theta| = ||\mathbf{n}|| D$.

Then

$$D = \frac{|\mathbf{v} \cdot \mathbf{n}|}{\|\mathbf{n}\|} = \frac{|\langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle \cdot \langle a, b, c \rangle|}{\|\langle a, b, c \rangle\|}$$
$$= \frac{|ax_1 + by_1 + cz_1 - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}$$
$$= \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}.$$