Class 3, Practice Problems

Mutivariable Calculus

January 20, 2020

11.3 Dot product

- 1. Let $\mathbf{u} = \mathbf{i} 3\mathbf{j} + 7\mathbf{k}$ and $\mathbf{v} = 8\mathbf{i} 2\mathbf{j} 2\mathbf{k}$.
 - a) Find $\mathbf{u} \cdot \mathbf{v}$.
 - b) Find $\cos \theta$ where θ is the angle between **u** and **v**.
- 2. Explain why each of the following expressions makes no sense.
 - a) $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$
 - b) $(\mathbf{u} \cdot \mathbf{v}) + \mathbf{w}$
 - c) $\|\mathbf{u} \cdot \mathbf{v}\|$
 - d) $k \cdot (\mathbf{u} + \mathbf{v})$.
- 3. Let $\mathbf{u} = \mathbf{i} + 2\mathbf{j}$ and $\mathbf{w} = 6\mathbf{i}$. Find $\|(\mathbf{u} \cdot \mathbf{w})\mathbf{w}\|$.

11.4 Cross product

- 1. Use a determinant to find the cross product: $\mathbf{i} \times (\mathbf{i} + \mathbf{j} + \mathbf{k})$.
- 2. True or false:
 - (a) $\mathbf{i} \times \mathbf{j} = \mathbf{j} \times \mathbf{i}$.
 - (b) For any vectors \mathbf{u} and \mathbf{v} , $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$.
- 3. Find the area of the parallelogram that has \mathbf{u} and \mathbf{v} as adjacent sides, given that $\mathbf{u} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{v} = -\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$.