Class 4, Practice Problems

Mutivariable Calculus

January 27, 2020

11.5 Parametric equations of lines

- 1. Find parametric equations of the line passing through the origin in 3d-space and parallel to $\mathbf{v} = \langle -1, 4, -1 \rangle$.
- 2. a) Find parametric equations of the line L passing through the point $P_1 = (-1, 0, 5)$ and $P_2 = (1, 4, 6)$.
 - b) Where does the line intersect the xy-plane?
- 3. Where does the line $\langle x, y \rangle = \langle 3t, 4t \rangle$ intersect the circle $x^2 + y^2 = 25$?
- 4. Find the point of intersection between the line L_1 and L_2 where $L_1: x=-1+4t, \quad y=3+t, \quad z=1$ $L_2: x=-13+12t, \quad y=1+\frac{7}{3}t, \quad z=-\frac{7}{2}+3t.$

11.6 Planes

- 1. Find an equation of the plane: The plane through the point (1, -1, 1) and with normal vector $\mathbf{i} + \mathbf{j} - \mathbf{k}$.
- 2. Find an equation of the plane: The plane through the point (-1, 6, -5) and parallel to the plane x + y + z + 2 = 0.
- 3. Find parametric equations for the line through (5,1,0) that is perpendicular to the plane 2x y + z = 1.