Practice Problems 2 for Final Exam.

Mutivariable Calculus

1. a) Find the domain and range of $f(x,y) = x^2 e^{-\sqrt{y+1}}$.

b) Compute the limit

$$\lim_{(x,y)\to(0,0)}\frac{x^2+4y^2}{x^2+3y^2}.$$

or prove that it does not exist.

c) Compute the limit

$$\lim_{(x,y)\to(0,0)}\frac{x^4 - 16y^4}{x^2 - 4y^2},$$

or prove that it does not exist.

- 2. Let $f(x, y) = xe^{-y} + 5y$.
 - a) Compute f_x and f_y .

b) Find the slope of the surface z = f(x, y) in the y-direction at the point (2, 5).

3. Let L(x, y) denote the local linear approximation to

$$f(x,y) = x^2 + 2xy - 4x$$

at the point (1,2). Use L(x, y) to approximate f(1.01, 2.03).

4. a) Use the chain rule to find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ if

$$f(x,y) = x^3 + y^3$$
, $x = e^{u+v}$, $y = 2u + 3v$.

Express your answer in terms of u and v.

b) Given z = f(x, y). Use implicit differentiation to find $\frac{\partial z}{\partial y}$ if $\ln(1+z) + xy^2 + 2z = 1.$ 5. a) Find the directional derivative of $f(x,y) = xe^y - ye^x$ at the point P = (0,0) in the direction $5\mathbf{i} - 2\mathbf{j}$

b) Find an equation for the tangent plane to the sphere

$$x^2 + y^2 + z^2 = 25$$

at the point P = (3, 0, 4).

6. Find all the local maximum and minimum values and saddle point(s) of the function $f(x, y) = 2xy - x^3 - y^2$.

Answers

1. a) Domain = {
$$(x, y) \in \mathbb{R}^2 | y \ge -1$$
}, Range = $\mathbb{R}^+ \cup \{0\}$.
b) The limit does not exist. You could try $(x, y) \to (0, 0)$ with $x = 0$ or try with $y = 0$.
(something else would work too, like $x = y$, for example.)
c) $\frac{x^4 - 16y^4}{x^2 - 4y^2} = x^2 + 4y^2$. So the limit is 0.
2. a) $f_x = e^{-y}$, $f_y = -xe^{-y} + 5$. b) Slope = $f_y(2, 5) = -2e^{-5} + 5$.
3. $L(x, y) = f(1, 2) + f_x(1, 2)(x - 1) + f_y(1, 2)(y - 2) = 1 + 2(x - 1) + 2(y - 2)$.
 $f(1.01, 2.03) \approx L(1.01, 2.03) = 1.08$.
4. a) $\frac{\partial f}{\partial u} = 3e^{3(u+v)} + 6(2u + 3v)^2$, $\frac{\partial f}{\partial v} = 3e^{3(u+v)} + 9(2u + 3v)^2$.
b) $\frac{\partial z}{\partial y} = \frac{-F_y}{F_z} = \frac{-2xy}{\frac{1}{1+z} + 2} = \frac{-2xy(1+z)}{3+2z}$.
5. a) $D_u(f) = \nabla f(0, 0) \cdot \mathbf{u} = \langle 1, -1 \rangle \cdot \frac{\langle 5, -2 \rangle}{\sqrt{29}} = \frac{7}{\sqrt{29}}$.
b) Equation of the tangent plane:
 $0 = F_x(x - x_0) + F_y(y - y_0) + F_z(z - z_0) = 6(x - 3) + 0(y - 0) + 8(z - 4) = 6x + 8z - 50$
or $3x + 4z = 25$.
6. There are two critical points $(x, y) = (0, 0)$ and $(x, y) = (2/3, 2/3)$.

At (0,0), D = -4 which implies (0,0) is a saddle point.

At (2/3, 2/3), D = 4 and $f_{xx} = -4$ which implies (2/3, 2/3) is a local maximum.