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Abstract

In 1998, Ciucu published “No-feedback card guessing for dovetail shuffles”, an
article which gives the optimal guessing strategy for n cards (n even) after k riffle
shuffles whenever k > 2 log2 (n). We discuss in this article the optimal guessing
strategy and the asymptotic (in n) expected number of correct guesses for any fixed
k ≥ 1. This complements the work achieved two decades ago by Ciucu.

Keywords: card guessing; no feedback; optimal strategy; discrete probability; gen-
erating function.
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art of guessing it right

Over the past several decades, there have been studies and established theories attempting
to tackle many aspects of the Card Guessing Game, e.g. finding the optimal or worst
case strategies, identifying the distribution and the expected number of correct guesses,
etc. You might have seen a dealer performing “riffle shuffles”, perhaps at the Vegas
casinos or at the basement poker nights. Before play can begin, the cards have to be
shuffled multiple times to mix the cards randomly. [Bayer and Diaconis (1992)] proved
the famous result that after giving the deck seven riffle shuffles, all the 52 cards will be
equally likely to be in one position as in another.
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Card Guessing Game!

Start: To start, you will need:
• A dealer and a player

• 1 deck of mn cards ordered 1, ..., 1︸ ︷︷ ︸
m copies

, . . . , n, ..., n︸ ︷︷ ︸
m copies

How to Play?

• The dealer shuffles the deck according to some Shuffling Rule R.

• Cards are then dealt from the top, and the player guesses each card one at a time.

• Play continues until the entire deck has been gone through.

Scoring: The player earns 1 point for each correct guess.

Feedback: The player is given Feedback F ∈ {Complete, Partial, No} after each guess.

Object of the Game: The object of the game is to earn as many points as possible.

Let us take a look at a quick guide of how the game is played. As shown above, the player
may or may not receive feedback from the dealer depending on the rule. The complete
feedback game is similar to blackjack for which the dealer reveals the card after each
play (guess). The player thus can adjust their strategy of play, to improve his odds of
guessing the next cards correctly, according to the cards they have already seen. For the
no-feedback game, however, as no feedback is given, the player has to guess all the cards
beforehand. To increase the probability of guessing the correct number, it is possible to
guess the same card number for cards in different positions. Summary of terminologies
and definitions related to the card guessing games are now given.

Terminologies

• Level of feedback: The player in the No Feedback variant is informed noth-
ing about the correctness of his or her guess after each guess. In the Complete
Feedback variant, on the other hand, the value of the card will be revealed to the
player after each guess. Finally, in the Partial Feedback variant (also known as
Yes/No Feedback), the player is informed whether his or her guess was correct
after each guess, but the value of the card will not be revealed in case of incorrect
guesses.

• Card shuffling: If Uniform Shuffle is applied, the shuffled deck starts in a
randomly shuffled state. Applying Top to Random Shuffle means the dealer
takes the top card and places it back into the deck at position i with probability
pi. For Riffle Shuffle (also known as GSR Shuffle or Dovetail Shuffle),
the dealer cuts the deck into two piles before interleaving the two back into one.
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Beginning with an ordered set (1 increasing subsequence), a single riffle shuffle will
lead to a permutation with at most 2 increasing subsequences. The parameter k for
the riffle and top to random shuffles represents the number of times the deck has
been shuffled. In particular, k = 1 means a single shuffle.

• Optimal (Best) versus Optimal Misère Strategy: A given strategy is said
to be Optimal (or Best) Strategy if the strategy achieves the maximum ex-
pected number of correct guesses, where the maximum is taken over all strategies.
Optimal Misère (or Worst-case) Strategy, which achieves the minimum
expected number, is defined analogously [Diaconis et al. (2020)].

We summarize the game variants in the literature, characterized by the shuffling rules,
the level of feedback, and the number of copies of each card type in Table 1.

Table 1: Variants of the Card Guessing Game
Authors Shuffling R #Copies Feedback F Contribution

[Diaconis and Graham (1981)] uniform 1, m complete (m > 1), distribution of the number

partial (m = 1) of correct guesses,

optimal and misère strategies

[Diaconis et al. (2020)] uniform m partial expected number of

and [Diaconis et al. (2022)] correct guesses

[Bayer and Diaconis (1992)] k- riffle 1 complete a sharp bound on the number

of shuffles to random deck

[Ciucu (1998)] k- riffle 1 no best strategy for k = 1

and k > 2 log2 (n), n even,

expected number of correct guesses

d Present work k- riffle 1 no best strategy for any fixed k ≥ 1,

expected number of correct guesses

[Pehlivan (2010)] k- top to 1 no best strategy for k > 4n log(n) + cn,

random n even

[Liu (2021)] 1- riffle 1 complete expected number of

correct guesses

[Krityakierne et al. (2021)] 1- riffle 1 complete (refined) expected number

of correct guesses, higher moments

Our contribution

As specified in the table, our contribution in this paper builds on and fills gaps of
the no-feedback card guessing game with riffle shuffles in the literature. Specifically,
[Ciucu (1998)] proved that, given a deck of n cards (n even), the best no-feedback guess-
ing strategy after k riffle shuffles when k > 2 log2 (n) is to guess card number 1 for the
first half and card number n for the second half of the deck. The expected number of
correct guesses in this case is therefore at most 2. By using this strategy, Ciucu showed
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that after shuffling the cards the number of order log2 (n) times, the deck is well mixed,
i.e. close to randomly distributed deck. In addition, Ciucu also gave the strategy for the
other extreme case, k = 1. In this work, we focus exclusively on the analysis of games
for a general but finite value of k ≥ 1, which complements work by [Ciucu (1998)] in the
no-feedback card guessing game with riffle shuffle variant.

Time to play

Let us consider now a strategy of guessing the cards after the deck is riffle-shuffled k-times,
for k ≥ 1, following these rules:

• At the beginning, a deck of n cards is ordered 1, 2, 3, . . . , n.

• The dealer riffle shuffles the deck k times.

• No feedback is given after each guess.

Let’s start with k = 1, a single riffle shuffle

Take out a deck of n cards, cut it into two piles (possible to have 0 cards in one of the
piles), and interleave the cards from two piles in any possible way. What are all possible
permutations you can generate?

Figure 1: Examples of all possible permutations after 1-time riffle shuffling for n = 1, 2, 3, 4.
For each card position, the color indicates the most likely number.

For instance, when n = 1, {1} is the only possible permutation, but with multiplicity 2,
generated from the piles ({1}, {}) or ({}, {1}). In general, there are 2n possibilities, among
which n + 1 are the identity permutation (having one increasing subsequence), and the
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others are of two increasing subsequences (with multiplicity 1). We give a few examples
in Figure 1. For each card position, the color indicates the most likely number to show
up in that position.

What number is most likely to show up in position i?

We record the frequency of a card in position i being number j in the matrix M = (mi,j) .
Then, the row i of the matrix corresponds to position i of the card. The column j of the
matrix corresponds to card number j. For example m1,3 gives the number of times the
top card is 3.

When n = 4, the matrix M is given by

M =


9 3 3 1

4 6 4 2

2 4 6 4

1 3 3 9

 .

Probability matrix for k = 1 shuffle, P (1)

For a fixed n, we define a probability matrix for k = 1 shuffle, P (1) := M/2n. Let

a(i, j, n) :=
mi,j

2n
be the (i, j) element of P (1). Then, a(i, j, n) represents the probability

of a card in position i being number j. It turns out that a(i, j, n) has an exact formula:

a(i, j, n) =
1

2i

(
i− 1

j − 1

)
+

1

2n−i+1

(
n− i
j − i

)
. (1)

This formula was mentioned and proved earlier in [Ciucu (1998)]. We notice that the first
term is non-zero when i ≥ j and the second term is non-zero when j ≥ i. The row sum
and column sum are both equal to 1, i.e. P (1) is a doubly stochastic matrix. This is easy
to show in one direction, but not so easy to show in the other direction:

n∑
j=1

a(i, j, n) =
1

2i

i∑
j=1

(
i− 1

j − 1

)
+

1

2n−i+1

n∑
j=i

(
n− i
j − i

)
=

1

2
+

1

2
= 1,

and
n∑
i=1

a(i, j, n) =
n∑
i=j

1

2i

(
i− 1

j − 1

)
+

j∑
i=1

1

2n−i+1

(
n− i
j − i

)
= 1.

Also, the symmetic property is easily observed through the matrix P (1):

a(i, j, n) = a(n+ 1− i, n+ 1− j, n). (2)
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Guessing strategy exists. Do not blind guessing!

As we now have a formula for the probability that each number j shows up in the position
i stored in the matrix P (1), it is possible to find the optimal guessing strategy that gives
the maximum expected number of correct guesses. Since the first row of P (1) corresponds
to the top card, the second row the second card, and so on, it is easily shown that one
should pick the index of the largest value from each row i as a best guess for the card in
the position i, for i = 1, . . . , n.

The expected number of correct guesses

Let XG be a random variable representing the number of correct guesses of an n-card deck
if the player uses strategy G. To find the expectation E

[
XG
]
, we consider

XGi =

{
1

0

if the player guesses the ith position correctly

otherwise.

Since

E
[
XG
]

=
n∑
i=1

E
[
XGi
]

=
n∑
i=1

P
(
XGi = 1

)
≤

n∑
i=1

max
1≤ji≤n

a(i, ji, n),

the optimal strategy can be defined as follows.

Optimal guessing strategy G∗
For a fixed row i (1 ≤ i ≤ n) of the matrix P (1), let j∗i := arg maxj a(i, j, n).
Under the optimal guessing strategy G∗, the player guesses number j∗i for the card position
i, and in this case,

E
[
XG

∗]
=

n∑
i=1

a (i, j∗i , n) .

For example, when n = 4, the largest number from each row i of the matrix M (those
numbers having a small square around) tells us that j∗1 = 1, j∗2 = 2, j∗3 = 3, and j∗4 = 4.
Thus, the optimal strategy is to guess number 1, 2, 3, 4, respectively.

In general, as we shall see later in our main theorem (Theorem 9, in its simplest case)
that for a 1-time shuffled deck, the optimal strategy is to guess the top half of the deck
with sequence

1, 2, 2, 3, 3, 4, 4, . . .

and guess the bottom half in the reverse manner, i.e.

. . . , n− 3, n− 3, n− 2, n− 2, n− 1, n− 1, n.
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To end the section, we restate a result from [Ciucu (1998)] regarding the value of E
[
XG

∗]
for k = 1. The main result of our paper is to obtain similar results, but for any k ≥ 1
times riffle shuffles.

Theorem 1 (Ciucu, 1998). For a deck of n cards, given that the no-feedback guessing of
the whole deck after 1-time shuffle goes according to the best strategy, the average number

of correct guesses is
2
√
n√
π

+O(1).

1 Preview: the k-time riffle shuffles
0%

We now turn to a general case in which a deck of n cards is given k > 1 times riffle shuffles.
Our goal is to obtain a similar statement to Theorem 1 for asymptotic n.

Probability matrix for general k shuffles, P (k)

Analogous to a(i, j, n) for the case k = 1, we let a
(k)
i,j denote the probability that the card

number j will show up at position i after giving the deck k riffle shuffles (where we now

make i, j subscripts, and suppress n from a
(k)
i,j for simplicity). The probabilty matrix P (k)

for k shuffles is subsequently defined by
(
P (k)

)
i,j

= a
(k)
i,j .

Since the transpose matrix
(
P (1)

)T
is a probability transition matrix, it follows that P (k) =(

P (1)
)k

, the k-th power of the matrix, and so

a
(k)
i,j =

n∑
s1=1

· · ·
n∑

sk−1=1

a
(1)
i,s1
a(1)s1,s2 . . . a

(1)
sk−1,j

. (3)

Similar to the case k = 1, the expected number of correct guesses under the optimal
strategy G∗ is

E
[
XG

∗]
=

n∑
i=1

a
(k)
i,j∗i
. (4)

Thus, finding the optimal guessing strategy boils down to determining the optimal strategy
j∗i which maximizes a

(k)
i,j for each i = 1, . . . , n.

Caution! Even though we have a closed-form expression for a
(1)
i,j as given in Equation

1, simply plugging the closed-form formula in Equation 3 in attempt to solving for the
maximizer of a

(k)
i,j directly is unfortunately not tractable.
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Before we dive into the details of the proof, we give an overview of the proof procedure,
together with the accompanying Figure 2 depicting the p.m.f. a

(3)
60,j (i.e. i = 60, k = 3) for

n = 200 cards. Here, we want to find the maximizer index j∗60 of the p.m.f. In practice,
the expression of the p.m.f. (the red line) is not tractable. We show later that the p.m.f.
is indeed a mixture model with 2k components, whose expressions are tractable via the
generating functions.

Proof procedure

Setup: We fix row i of matrix P (k), and let Ji be a random variable whose probability mass
function (p.m.f.) is given by

P (Ji = j) = a
(k)
i,j , for j = 1, . . . , n.

Goal: Find the index j∗i that maximizes P (Ji = j).

Procedure: The main steps in the proof proceed as follows:
1. Decompose the p.m.f. of Ji into a mixture model with 2k components:

P (Ji = j) =
1

2k

2k∑
t=1

pLt(j).

2. Define, for each pLt , the probability generating function (p.g.f.):

FLt(x) =
n∑
j=1

pLt(j) · xj .

3. Recover the distribution pLt through the p.g.f. FLt(x).

4. Find, for n large, the location and the height of the peak of pLt .

5. Show, for n large, that the components pL1 , . . . , pL2k
of the mixture model are (almost)

non-overlapping.

Maximizer: The location of the highest peak among the 2k components is the solution j∗i .

2 Game start: the generating function of pL
13%

As outlined in the proof procedure, we let i = 1, . . . , n be fixed, and focus exclusively on
the ith row of the matrix P (k) whose p.m.f. is given by

P (Ji = j) = a
(k)
i,j , j = 1, . . . , n.
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Figure 2: Example (k = 3, n = 200, i = 60): (a) the p.m.f. of the mixture model J60;
(b) the decomposed components of the mixture model, P (J60 = j) = 1

8

∑8
t=1 pLt(j)

We start by decomposing ai,j (k = 1):

ai,j =
1

2
[b

(1)
i,j + b

(2)
i,j ], (5)

where

b
(1)
i,j :=

1

2i−1

(
i− 1

j − 1

)
, b

(2)
i,j :=

1

2n−i

(
n− i
j − i

)
.

In general, for k ≥ 1, we decompose a
(k)
i,j into the sum of 2k possible products of b

(l)
i,j . That

is, we write

a
(k)
i,j =

1

2k

∑
L

pL(j), (6)

where L is the list of length k whose entries are either 1 or 2,

pL(j) :=
n∑

s1=1

· · ·
n∑

sk−1=1

b
(L[1])
i,s1

b(L[2])s1,s2
. . . b

(L[k])
sk−1,j

, (7)

and L[l] refers to the lth element of L.

For example, for k = 2,

a
(2)
i,j =

1

4

[
p[1,1](j) + p[2,1](j) + p[1,2](j) + p[2,2](j)

]
,

9



where

p[1,1](j) =
n∑
s=1

b
(1)
i,s b

(1)
s,j =

n∑
s=1

1

2i−1

(
i− 1

s− 1

)
1

2s−1

(
s− 1

j − 1

)
,

p[2,1](j) =
n∑
s=1

b
(2)
i,s b

(1)
s,j =

n∑
s=1

1

2n−i

(
n− i
s− i

)
1

2s−1

(
s− 1

j − 1

)
,

p[1,2](j) =
n∑
s=1

b
(1)
i,s b

(2)
s,j =

n∑
s=1

1

2i−1

(
i− 1

s− 1

)
1

2n−s

(
n− s
j − s

)
,

p[2,2](j) =
n∑
s=1

b
(2)
i,s b

(2)
s,j =

n∑
s=1

1

2n−i

(
n− i
s− i

)
1

2n−s

(
n− s
j − s

)
.

Another example for k = 3, L = [1, 1, 2] leads to

pL(j) =
n∑

s1=1

n∑
s2=1

b
(1)
i,s1
b(1)s1,s2b

(2)
s2,j

=
n∑

s1=1

n∑
s2=1

1

2i−1

(
i− 1

s1 − 1

)
1

2s1−1

(
s1 − 1

s2 − 1

)
1

2n−s2

(
n− s2
j − s2

)
.

Generating function of pL

The expression of pL in Equation 7 initially involves (k − 1)-nested binomial sum, for
which we have no means of simplifying. The crux of our proposed approach is to find the
generating function of pL, giving rise to k-nested sum. After reordering the summation
by moving the outermost sum (the summation over index j) to innermost, and evaluating
the summations from the inside (that of the index j) to the outside (those of sk−1, . . . , s1),
fortunately, we obtain a very simple generating function for all k ≥ 1.

We define the generating function by

FL(x) =
n∑
j=1

pL(j) · xj. (8)

Remark 1. FL(x) is a valid probability generating function as FL(1) = 1. This also
ensures that each pL in Equation 6 is a valid probability mass function.

Let us look at some examples of FL(x):

• for k = 0,
F[ ](x) = xi.

This is a trivial case. When cards are not shuffled, the probability that the card in
position i is i is 1.
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• for k = 1,

F[1](x) = (0x+ 1)n−i
(
x

2
+

1

2

)i−1
x, F[2](x) =

(
x

2
+

1

2

)n−i
· (x+ 0)i−1 x.

• for k = 2,

F[1,1](x) = (0x+ 1)n−i
(
x

4
+

3

4

)i−1
x, F[2,1](x) =

(
x

4
+

3

4

)n−i(
x

2
+

1

2

)i−1
x,

F[1,2](x) =

(
x

2
+

1

2

)n−i(
3x

4
+

1

4

)i−1
x, F[2,2](x) =

(
3x

4
+

1

4

)n−i
(x+ 0)i−1 x.

Hooray! FL(x) has a nice simple pattern

It is utterly important that FL(x) has a simple pattern from which the underlying structure
of the problem can be uncovered. To keep track of the pattern, we define a functional
notation:

g(a, b) = [ax+ (1− a)]n−i · [bx+ (1− b)]i−1 · x. (9)

With this notation, the function FL(x) for k = 0, 1 can be expressed as

• for k = 0,
F[ ](x) = g(0, 1).

• for k = 1,

F[1](x) = g

(
0,

1

2

)
, F[2](x) = g

(
1

2
, 1

)
.

For general k ≥ 1, a bisection tree in Figure 3 illustrates the connections between the
expressions FL(x) of the k and k + 1 shuffles. At any subtree, the argument (a, b) for the
function g(·) of the parent node is bisected, yielding the arguments for the left (a, a+b

2
)

and the right (a+b
2
, b) child nodes. It is important to note that the parent’s index Lt is

expanded by adding the first entry (either 1 or 2) to create the child’s indices, i.e. the list
indices [1, Lt] and [2, Lt] for the first and second child nodes, respectively.

Let us state and prove this observation.

Theorem 2 (Generating functions). Let g(a, b) = [ax + (1− a)]n−i · [bx + (1− b)]i−1 · x.
For any given k ≥ 1, and the list indices L1, L2, . . . , L2k ,

FLt(x) = g

(
t− 1

2k
,
t

2k

)
,

for t = 1, 2, . . . , 2k
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Figure 3: A bisection tree structure. Each node of depth k represents FLt(x) for t =
1, 2, . . . , 2k.

We use the following lemma to find the sum of the terms in FL(x) recursively.

Lemma 3. Assume f(i) = An−iBi−1x where A = ax + (1 − a) and B = bx + (1 − b).
Then,

T1(f) :=
i∑

s=1

1

2i−1

(
i− 1

s− 1

)
f(s) = An−i

(
A+B

2

)i−1
x;

T2(f) :=
n∑
s=i

1

2n−i

(
n− i
s− i

)
f(s) =

(
A+B

2

)n−i
Bi−1x.

Proof. First, it is easy to show that

i∑
s=1

1

2i−1

(
i− 1

s− 1

)
xs−1 =

(
x

2
+

1

2

)i−1
and

n∑
s=i

1

2n−i

(
n− i
s− i

)
xs−1 =

(
x

2
+

1

2

)n−i
· (x+ 0)i−1 .
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For the general case,

i∑
s=1

1

2i−1

(
i− 1

s− 1

)
f(s) =

i∑
s=1

1

2i−1

(
i− 1

s− 1

)
An−1

(
B

A

)s−1
x

= An−1x

(
A+B

2A

)i−1
, from the above identity

= An−i
(
A+B

2

)i−1
x.

This proves the first claim regarding T1(f). The second claim can be done similarly.

We now return to the proof of Theorem 2.

Proof of Theorem 2. We prove by induction on k = |L|. For the base case, we verify
that F[ ](x) = xi, is indeed g(0, 1). For the induction step, let L′ = [lk−1, .., l2, l1] and

L = [lk, lk−1, ..., l2, l1] = [lk, L
′] . Assume f := FL′(x) = g

(
t− 1

2k−1
,

t

2k−1

)
. Then it follows

from Lemma 3 that FL(x) = T1(f) = g

(
2t− 2

2k
,
2t− 1

2k

)
if lk = 1 and FL(x) = T2(f) =

g

(
2t− 1

2k
,

2t

2k

)
if lk = 2.

Open Problem 1: Find a combinatorial interpretation for the generating function FL(x)
of this card guessing problem.

3 Distribution of pL when n is large
47%

Exact distribution of pL

Through the formula of g(a, b) in Theorem 2, it is easy to see that pL is the sum of two
independent binomial random variables and a constant. The following corollary formally
states the distribution of pL, and eventually the exact distribution of a

(k)
i,j .

Corollary 4. For any given k ≥ 1 and L1, L2, . . . , L2k , let SLt be a random variable whose
probability generating function is given by FLt(x) defined in Theorem 2. Then,

SLt ∼ B1 +B2 + 1,
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where B1 ∼ Binomial

(
n− i, t− 1

2k

)
and B2 ∼ Binomial

(
i− 1,

t

2k

)
are independent. In

other words, pLt follows a Poisson Binomial distribution with success probabilities equal
to

t− 1

2k
, ...,

t− 1

2k︸ ︷︷ ︸
n−i times

,
t

2k
, ...,

t

2k︸ ︷︷ ︸
i−1 times

, 1.

Hence, for fixed values of n, i, k, the distribution {a(k)i,j : j = 1, . . . , n} is a mixture of 2k

components of Poisson Binomials.

Example. To better visualize the distribution, Figure 4 illustrates the p.m.f. for the case
k = 2 shuffles when i = 15 and n = 40.

Figure 4: Probability mass functions p[1,1], p[2,1], p[1,2], p[2,2] for i = 15 and n = 40

In this case, the distribution of each random variable is

S[1,1] ∼ Binomial

(
14,

1

4

)
+ 1, S[2,1] ∼ Binomial

(
25,

1

4

)
+ Binomial

(
14,

2

4

)
+ 1,

S[1,2] ∼ Binomial

(
25,

2

4

)
+ Binomial

(
14,

3

4

)
+ 1, S[2,2] ∼ Binomial

(
25,

3

4

)
+ 15.

Lyapunov Central Limit Theorem

The Lyapunov CLT generalizes the classical Lindeberg-Feller CLT. The theorem pro-
vides a sufficient condition under which the sum of independent (but not necessarily
identical) random variables converges in distribution to the standard normal distribution
[Durrett (2019)].

Theorem 5 (Lyapunov CLT). Let X1, X2, . . . , be a sequence of independent random vari-
ables such that E (Xn) = µn and Var (Xn) = σ2

n are both finite. Define

s2n =
n∑
i=1

σ2
i .

14



If there exists δ > 0 such that

lim
n→∞

1

s2+δn

n∑
i=1

E
(
|Xi − µi|2+δ

)
= 0, (Lyapunov’s condition)

then
1

sn

n∑
i=1

E (Xi − µi)
d→ N (0, 1) .

The following example gives a sufficient condition for the sum of non-identical Bernoulli
random variables to converge to a normal distribution.

Example (Lyapunov’s condition for Bernoulli random variables). Let Xn ∼ Bernoulli (pn)
be a sequence of independent Bernoulli random variables. Then, µn = pn and σ2

n =
pn (1− pn). Since

E
(
|Xn − µn|3

)
= pn (1− pn)3 + (1− pn) p3n = σ2

n (1− 2pn (1− pn)) ≤ σ2
n,

it follows that (for δ = 1),

1

s3n

n∑
i=1

E
(
|Xi − µi|3

)
≤ 1

s3n

n∑
i=1

σ2
n =

1

sn
.

Thus, if limn→∞ sn =∞, or equivalently, whenever

n∑
i=1

pi (1− pi)→∞,

the Lyapunov’s condition holds for Bernoulli random variables.

Corollary 6. Let 0 < p, q < 1 be fixed, and T1 ∼ Binomial (m, p) and T2 ∼ Binomial(n, q)
be two independent binomial random variables. Then,

(T1 + T2)− (mp+ nq)√
mp (1− p) + nq (1− q)

d→ N (0, 1)

whenever m→∞ or n→∞ or both hold.

Proof. First note that T1 + T2 has mean mp + nq and variance mp (1− p) + nq (1− q).
The result is immediate as we can write

T1 + T2
d
= X1 + · · ·+Xm︸ ︷︷ ︸

Xi∼Bernoulli(p)

+Xm+1 + · · ·+Xm+n︸ ︷︷ ︸
Xi∼Bernoulli(q)

,

15



and the Lyapunov’s condition for Bernoulli random variables,

m+n∑
i=1

pi (1− pi) = mp+ nq →∞,

is satisfied whenever m→∞ or n→∞ or both hold.

The trivial cases of p[1,1,...,1] and p[2,2,...,2]

Corollaries 4 and 6 tell us that as n is sufficiently large, pLt will approach a normal
distribution, except for the trivial cases that might occur with p[1,1,...,1] and p[2,2,...,2].
In particular, regardless of the magnitude of n, p[1,1,...,1] will remain a shifted bino-

mial random variable, Binomial

(
i− 1,

1

2k

)
+ 1, for small i, whereas p[2,2,...,2] remains

Binomial

(
n− i, 1− 1

2k

)
+ i, for small n− i.

For the future reference, the modes of p[1,1,...,1] and p[2,2,...,2] are located at

ji =

⌊
i

2k

⌋
+ 1 (10)

and

ji =

⌊
(n− i+ 1)

(
1− 1

2k

)⌋
+ i, (11)

respectively, for i = 1, . . . , n.

We shall hereafter call these two cases “the trivial cases”. In order not to interrupt the
flow of the presentation, we will consider only the non-trivial cases of p[1,1,...,1] and p[2,2,...,2]
(when the CLT applies) in detail, and defer the discussion of the trivial cases to the end
of the section.

We immediately obtain the following corollary (for the non-trivial cases).

Corollary 7. Let k ≥ 1 be fixed, and t = 1, 2, 3, . . . , 2k. As n→∞,

pLt

d→ N
(
µt, σ

2
t

)
,

where

µt = (n− i)
(
t− 1

2k

)
+ (i− 1)

(
t

2k

)
+ 1

and

σ2
t = (n− i)

(
t− 1

2k

)(
1− t− 1

2k

)
+ (i− 1)

(
t

2k

)(
1− t

2k

)
.
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Figure 5: (Figure accompanying Remark 2.) Probability mass functions p[1,1], p[2,1], p[1,2],
p[2,2] for i = 15, and n varies from 30 (top row), 50 (middle row), and 100 (bottom row).
Observe that regardless of the value of n, the distribution p[1,1] remains the same.

Remark 2. As a practical note, whenever we come across the statement “as n → ∞’’
or “large enough n”, the condition such as n ≥ N(k) can be used for the CLT to be
applicable. This can be seen from Figure 5: k = 2 shuffles where we fix i = 15, and
vary n from 30, 50, and 100. Here, n = 30 seems pretty large already for the middle
two distributions p[2,1] and p[1,2] to converge to a normal distribution. For the case when
t = 1, since i = 15 is small, we have the trivial case here. The distribution p[1,1] which is
independent of n remains the same shifted Binomial regardless of the values of n (see the
first column of the figure). On the other hand, for the case when t = 2k, n − i = n − 15
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increases from 15, 35, 85 as n increases from 30, 50, 100, and so the distribution of p[2,2]
converges to a normal distribution in this case (see the last column of the figure).

4 Which peak is highest when n is large?
61%

Our goal now is to compare the heights of the peak of each component pLt , t = 1, . . . , 2k

(for the non-trivial cases). To clearly visualize this, we overlay the plots of p[1,1], p[2,1],
p[1,2], p[2,2] on the same axis in Figure 6. Here, we fix n = 100 and vary i from 10, 20, 50,
and 91. We give an example of i = 91 in order to emphasize the fact that the cases i = 10
and i = 100 − 10 + 1 = 91 are mirror images of each other along the vertical direction.
The cases when i = 10 and 20 lead to the trivial case of p[1,1].

Figure 6: Probability mass functions p[1,1], p[2,1], p[1,2], p[2,2] for n = 100, and i varies from
10, 20, 50, and 91. Notice that i = 10 and i = 91 are mirror images along the vertical
direction.

The smaller the standard deviation, the higher the peak

Recall the standard deviation σt of each pLt given in Corollary 7, and the fact that the
component pLt with smallest standard deviation will have the highest peak. By comparing

18



the values of σt, we obtain the following proposition which can be used to identify the
component pL∗ which achieves the highest peak among components pLt , t = 1, . . . , 2k.

Proposition 8. Let n, i, k be fixed. For t = 1, . . . , 2k, the height of the peak of pLt (when

n is large) is approximately equal to
1

σt
√

2π
, where

σt =

√
(n− i)

(
t− 1

2k

)(
1− t− 1

2k

)
+ (i− 1)

(
t

2k

)(
1− t

2k

)
. (12)

Denote by pL∗ the component whose peak is highest among pLt, t = 1, . . . , 2k. Then,

pL∗ =

 p[1,1,...,1]

p[2,2,...,2]

if i ≤
⌊

(n+ 1)

2

⌋
otherwise.

(13)

Proof. The height
1

σt
√

2π
of the peak is due to the bell-shaped curve normal distribution.

Using the fact that f(p) := p(1 − p) is unimodal and attains a minimum value at the

boundary points, it is clear that if i ≤
⌊

(n+ 1)

2

⌋
, σt is smallest when t = 1. Hence,

pL∗ = p[1,1,...,1] in this case. The result of the other case is justified in the same way.

5 Almost non-overlapping pL1, pL2, . . . , pL2k

79%

Recall that our ultimate goal is to determine for each i, the index j∗i that maximizes the
mixture distribution

a
(k)
i,j =

1

2k

2k∑
t=1

pLt(j).

Thus far, we were able to show that, as n is large, the mixture components pLt are

each normal distribution, and hence a
(k)
i,j has the Gaussian mixture distribution. We have

also identified the component pL∗t whose peak is highest. Now, since the peaks of any two

consecutive components pLt and pLt+1 are
n− 1

2k
apart (easily verified by taking µt+1−µt),

while the standard deviation of each pLt is of order O(
√
n), we can be sure that, as n→∞,

the Gaussian components pL1 , . . . , pL2k
are hardly overlapping.
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Maximum probablity a
(k)
i,j∗ is found!

The fact that the components pL1 , pL2 , . . . , pL2k
are (almost) non-overlapping (i.e. well-

separated) when n is large is very crucial and tremendously simplifies the problem of

locating the maximizer j∗i of a
(k)
i,j . In particular, the location of the highest peak pL∗ ,

identified previously in Proposition 8, is the maximizer we are seeking.

To see this, Figure 7 (k = 3, i = 15) illustrates the p.m.f of components pL1 , pL2 , . . . , pL8 ,
and the superposition of the mixture distribution (the red line). We do not assign the
weight of 1/8 to each component for the sake of clear visualization of the mixture. The
location of the peak of the red line is the maximizer j∗i . As can be seen from the figure,
when n is small (top), the location of j∗i = 3 (red asterisk) does not coincide with the
location of the highest peak of pL1 (blue asterisk, at j = 2). On the other hand, as n
becomes larger (bottom), the almost non-overlapping phenomenon occurs: while the peak
of pL1 remains at the same height, the peaks of other components pLt , t > 1, get lower and
further apart (remember the standard deviation is of order O(

√
n)). Thus, the location of

the maximizer j∗i coincides with the location of the peak of the component pL1 whenever
n is sufficiently large.

Remark 3. We actually do not require n to be that close to infinity. The components pLt

can still be overlapping, as long as there is no shift in the location of the maximum peak
in the mixture model, and that is all we need. For example, we can see from the middle
plot of Figure 7 that we already get the desired outcome when n is as small as 50.

Revisit and settle the trivial cases

Before we end this section, let us now settle the trivial cases. In fact, everything we
have discussed so far applies to the trivial cases. In particular the result regarding pL∗ in
Proposition 8 still holds true. Consider for example the trivial case of p[1,1,...,1] when i is
small. Being a shifted Binomial with small and constant standard deviation σ1, the peak
of p[1,1,...,1] will indeed be highest. Figure 7 (when i = 15) also highlights the fact that
p[1,1,...,1] does not depend on n. In particular, while the peaks of the other pLt , t > 1 get
lower as n increases from 30, 50, 400, the peak of p[1,1,...,1] remains at the same height (and
same location of course). Proceeding in the same manner, the trivial case of p[2,2,...,2] when
n− i is small will achieve the highest peak, the result consistent with the second case of
Proposition 8.

6 Game solved!
100%

Now that we have done all the hard work, we are ready to wrap things up. The maximum

probablity of a
(k)
i,j is contributed solely from the peak of p[1,1,...,1] if i ≤

⌊
(n+ 1)

2

⌋
or p[2,2,...,2]
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Figure 7: Overlay probability mass functions pL1-pL8 for k = 3 shuffles and i = 15. The
red line is the superposition of the mixture distribution (without the weight 1/8.) Top:
when n is small, the location of j∗i does not necessary coincide with the location of the
peak of pL1 . Middle and Bottom: when n is large enough, the location of j∗i coincides
with the location of the peak of pL1 .

otherwise. Following immediately from the location of the mode of the shifted Binomial,
p[1,1,...,1] and p[2,2,...,2] as given in Equations 10-11 and Proposition 8, the optimal strategy
G∗ can now be determined.

Optimal guessing strategy G∗ for the ith position

• If i ≤
⌊

(n+ 1)

2

⌋
, the best guess is the number j∗i =

⌊
i

2k

⌋
+ 1;

• If i ≥
⌈

(n+ 1)

2

⌉
, the best guess is the number j∗i =

⌊
(n− i+ 1)

(
1− 1

2k

)⌋
+ i.
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That is, for a k-time shuffled deck of n cards, one should guess the top half of the deck
with sequence

1, . . . , 1︸ ︷︷ ︸
2k−1 times

, 2, . . . , 2︸ ︷︷ ︸
2k times

, 3, . . . , 3︸ ︷︷ ︸
2k times

, 4, . . . , 4︸ ︷︷ ︸
2k times

, . . .

and guess the bottom half in the reverse manner, i.e.

. . . , n− 3, . . . , n− 3︸ ︷︷ ︸
2k times

, n− 2, . . . , n− 2︸ ︷︷ ︸
2k times

, n− 1, . . . , n− 1︸ ︷︷ ︸
2k times

, n, . . . , n︸ ︷︷ ︸
2k−1 times

.

Using this strategy, we can calculate the expected number of correct guesses for the whole
deck leading to the main result of this paper. It is worth noting that the expected value
relies only on the standard deviation of the component p[1,1,...,1] of the first half of the deck,
as we shall now see.

Theorem 9. For an n-card deck, let XG
∗

be the number of correct guesses (according to
the optimal strategy G∗) after k-riffle shuffles. Then,

E
[
XG

∗]
=

2
√
n√

(2k − 1)π
+O(1).

Proof. Recall Equation 4: E
[
XG

∗]
=
∑n

i=1 a
(k)
i,j∗ =

1

2k
∑n

i=1 pL(j∗i ), and the standard

deviation of p[1,1,...,1]: σ1 =

√
(i− 1)

(
1

2k

)(
1− 1

2k

)
. By the symmetric property of the

probability matrix P (k), we will consider only half of the deck and double the value of the
summation. For an asymptotic value n, we have (from Proposition 8):

E
[
XG

∗]
= 2

b (n+1)
2 c∑
i=2

1√
(i− 1)(2k − 1)

√
2π

+O(1)

=
2√

(2k − 1)2π
2

√
n

2
+O(1)

=
2
√
n√

(2k − 1)π
+O(1).

Let us clarify the approximation error terms absorbed in O(1). Specifically, this includes
(i) the error in normal approximations, when i is small. The normal distribution gives
a less accurate approximation, say, for the first N(k) terms (finite number of terms for
a given k) of the sum, after which the approximation becomes more and more accurate.
The total error in this case is of order O(1); (ii) the approximation errors due to the CLT
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(i.e. the normal approximation to the shifted Binomial). These approximation errors are
asymptotically negligible compared to that in (i); and finally (iii) the errors of order O(1)
due to approximation of a summation by an integral (in the second equality).

From the theorem, notice that for each additional shuffle, the expected number of correct
guesses will go down by roughly a factor of

√
2 (in a huge deck of n cards, of course). We

also remark that for k = 1, the result boils down to that of [Ciucu (1998)].

Game Complete!
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