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Abstract

In the classical coupon collector’s problem, every box of breakfast cereal
contains one coupon from a collection of n distinct coupons, each equally likely
to appear. The goal is to find the expected number of boxes a player needs to
purchase to complete the whole collection. In this work, we extend the classical
problem to k players who compete with one another to be the first to collect
the whole collection. We find the expected numbers of boxes required for the
slowest and fastest players to finish the game. The odds of a particular player
being the slowest or fastest player will also be touched upon. The solutions
will be discussed from both the tractable algebraic techniques as well as the
probability point of views.

Keywords: coupon collector’s problem; fastest player; slowest player; multi-
ple players.

1 Prologue

The coupon collector’s problem is a classical mathematics problem that shows up in
a number of courses, from probability theory, simulations, programming, to name a
few. The classic version of the problem can be described as follows.

“You buy cereals in order to collect coupons that come with it. The upcoming col-
lection has n collectible coupons. Each cereal box contains one coupon. Assume that
every type of coupons is equally likely to appear. What is the expected number of
boxes you need to buy until you have a complete set of n coupons?”

By recalling the mean of the geometric distribution, the answer to the well-known
problem above is E [X] = nH (n), where H (n) is the n-th harmonic number (see for
example [1, p. 225]). An approximate solution to the coupon collector’s problem is

E [X] ≈ n log n+ γn+
1

2
,
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where γ ≈ 0.5772156649 is the Euler–Mascheroni constant.

The problem has been extended to a scenario where the player has to collect multiple
sets of coupons. This problem, known as the double dixie cup problem, was solved
by Newman and Shepp in 1960. Their results, published in American Mathematical
Monthly, showed that the expected number of boxes needed to complete m sets
of coupons is n (log n+ (m− 1) log log n+O(1)) [4]. In [5], Zeilberger found the
generating function for the expected number of types of cards of which the player
has exactly i copies at the end. The note [2] gave an extensive review on approaches
for solving the classical problem, and established some interesting results regarding
multiple collections. Generalization of the problem to a two-player game has also
been studied previously. For example, the probability that the faster player was
never behind at any intermediate stage of the play has been investigated in [3].

In this work, we extend the problem to k players who compete with one another
in collecting the coupons. To our surprise, generalizations of the coupon collector’s
problem in this direction seem to have never been addressed in the literature. We thus
take this opportunity to present and contribute some novel results. Notably, using
algebraic recurrence relations and difference equations as the tools, our main theorem
finds the expected number of boxes required for the slowest player to collect the whole
collection of n coupons. We further investigate the problem from a probability point
of view, which allows us to provide full insight into the recurrence relation and the
obtained solution.

1.1 A two-player scenario: the slower one

As a warm up, we consider a generalized version of the expected maximum time for
two players who are still missing s and t coupons, respectively. To be more precise,
given 0 ≤ s, t ≤ n, let X1(s) and X2(t) be random variables representing the number
of boxes the first player (who are still missing s coupons) and second player (missing
t coupons) need to open, until they each collect all n coupons. Then,

M (s, t) := E [max{X1(s), X2(t)}]

is the expected number of boxes required for the slower player to collect a complete
set of n coupons.

Using the law of total expectation, conditioning on whether a player found a new
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coupon type in the next box or not, we can write a recurrence relation:

M (s, t) =
( s
n

)(
1− t

n

)
M (s− 1, t) first player (found a new coupon)

+
(
1− s

n

)( t

n

)
M (s, t− 1) second player

+

(
s

n
· t
n

)
M (s− 1, t− 1) both

+
(
1− s

n

)(
1− t

n

)
M (s, t) neither

+ 1 (1 more box has been opened), (1)

with the initial condition M(0, 0) = 0 and M(s, t) = 0 if s or t < 0.

For the two-player scenario, the recurrence relation takes a vector argument [s, t].
The initial condition M(0, 0) = 0 means that the game has ended since both players
completed the whole set of coupons. Of course, we will not consider the case when
one of the arguments s or t is negative, so we assign a zero value whenever this
happens.

1.2 A one-player scenario

The above recurrence can be simplified to get a recurrence for the classical one-player
scenario:

M (s) =
( s
n

)
M (s− 1) the player found a new coupon

+
(
1− s

n

)
M (s) the player did not find a new coupon

+ 1 (1 more box has been opened),

with the initial condition M(0) = 0 and M(s) = 0 if s < 0. The reader can
quickly verify that M(s) = nH(s) indeed satisfies this recurrence together with the
initial condition given, consistent with the established result of the classical coupon
collector’s problem.

Our goal is to generalize the recurrence (1) to k > 2 players and come up with a
general strategy for solving it. Before proceeding to a more detailed explanation, let
us end this section with the main theorem of this paper.

Theorem 1. Let M (s1, s2, . . . , sk) := E [max{X1(s1), . . . , Xk(sk)}] be the expected
number of boxes required for the slowest player to collect all n coupons. Then,

M (s1, s2, . . . , sk) = nH(S)−
(H(S)− 1)

∑
i<j sisj

S(S − 1)
+O

(
1

n

)
, where S =

k∑
i=1

si.
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In the next section, we will introduce several important tools and concepts along the
way during the course of proving the theorem.

2 Proof of the theorem

We first give an algebraic proof of the theorem, and then in the next section we will
provide an alternative proof (from the probability view point) for the leading term,
which gives additional insight into the recurrence and the obtained solution.

2.1 Recurrence relation for the slowest player

We have seen that the recurrence for two players was set up after each player has
opened one more box, and checked whether or not they found a new coupon. Suppose
now that there are k players, where player i is still missing si coupons. The same
idea is applied to obtain a recurrence relation for the number of boxes required for
the slowest player in the k-player scenario.

M (s1, s2, . . . , sk) =
∑

I⊆{1,2,...,k}

[∏
j∈I

sj
n

][∏
j ̸∈I

(
1− sj

n

)]
M (VI)︸ ︷︷ ︸

players in I found a new coupon

+1, (2)

with the initial condition M(0, . . . , 0) = 0 and M(s1, s2, . . . , sk) = 0 if at least one
of si < 0.

The meaning of the notation in (2) is as follows. Let I be the set of index (possibly
empty) of the players who found a new coupon. For each I, the probability that

this event happens is
[∏

j∈I
sj
n

] [∏
j ̸∈I
(
1− sj

n

)]
. VI represents the updated vector

argument after the players in I found a new coupon, that is,

VI := [s1 − δI(1), s2 − δI(2), . . . , sk − δI(k)],

where δI(j) = 1 if j ∈ I and 0 otherwise. In particular, we write V{}, when no players
found a new coupon, and V{j} when only the player j found a new coupon.
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2.2 Solutions via difference equations

To solve the recurrence (2) for the first two leading terms, we shall reformulate the
solution as a difference equation. First, we expand out (2) to get

M (s1, s2, . . . , sk) = 1 +
k∏

j=1

(
1− sj

n

)
M (s1, s2, . . . , sk) (3)

+
k∑

j=1

sj
n

[∏
i ̸=j

(
1− si

n

)]
M (s1, . . . , sj − 1, . . . , sk)

+
∑
i<j

sisj
n2

[∏
l ̸∈i,j

(
1− sl

n

)]
M (s1, . . . , si − 1, . . . , sj − 1, . . . , sk) + . . . .

The coefficients of this recurrence indicate that the solution must be in the form:

M (s1, s2, . . . , sk) = nA1 + A0 +
1

n
A−1 +

1

n2
A−2 + . . . , (4)

where Ai, i ≤ 1 is a function of s1, s2, . . . , sk.

Having a solution written in the form (4), the proof of Theorem 1 boils down to the
problem of identifying A1 and A0 (which are the coefficients of the first two leading
terms of the solution). This also explains the remainder term O

(
1
n

)
in the theorem.

2.3 Setting up difference equations

To set up a difference equation for A1, plug the assumed form (4) into (3) and equate
the resulting constant terms (which correspond to the leading term) on both sides
of (3):

A0 = 1 + A0 −
k∑

j=1

sj
n
nA1(V{}) +

k∑
j=1

sj
n
nA1(V{j}).

(For simplicity of notation, we omit the full vector argument V{} = [s1, s2, . . . , sk] of
Ai when there is no ambiguity.)

Simplifying the above equation, we obtain the difference equation of A1

k∑
j=1

sj
(
A1(V{})− A1(V{j})

)
= 1, (5)

along with the initial condition A1(s, 0, 0, . . . , 0) = H(s), obtained from the one-
player scenario. Note that (5) is a first order difference equation as V{} = [s1, s2, . . . , sk]
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and V{j} = [s1, s2, . . . , sj − 1, . . . , sk]. Although we will soon explain how we come
up with the solution, the reader may quickly check that A1(V ) = H(S), where
S =

∑k
i=1 si, satisfies the difference equation (5) and the initial condition.

Next, we find a difference equation of A0. After plugging in (4), we equate the

coefficients of
1

n
(which is the second leading term) on both sides of (3):

1

n
A−1 = −

∑k
j=1 sj

n
A0 +

1

n
A−1 +

∑
i<j

sisj
n2

nA1

+

∑k
j=1 sj

n
A0(V{j})−

∑
i<j

sisj
n2

nA1(V{i})−
∑
i<j

sisj
n2

nA1(V{j}) +
∑
i<j

sisj
n2

nA1(V{i,j}).

Simplifying the above equation, we obtain the difference equation of A0

k∑
j=1

sj ·
(
A0(V{})− A0(V{j})

)
=
∑
i<j

sisj ·
(
A1(V{})− A1(V{i})− A1(V{j}) + A1(V{i,j})

)
.

We can further simplify the above equation by substituting A1(V ) = H(S), and the
difference equation of A0 becomes

k∑
j=1

sj ·
(
A0(V{})− A0(V{j})

)
=
∑
i<j

sisj

(
1

S
− 1

S − 1

)
, (6)

together with the initial condition A0(s, 0, 0, . . . , 0) = 0. This condition is due to the
absence of the other terms except the leading term, nH(s), in the solution of the
classical one-player scenario. Again, (6) is a first order difference equation.

2.4 Solving difference equations

The difference equations (5) and (6) that we are dealing with are a discrete ver-
sion of first order linear partial differential equations. In particular, both difference
equations take the following form

x1
∂u

∂x1

+ x2
∂u

∂x2

+ · · ·+ xk
∂u

∂xk

= f(x1, x2, . . . , xk),

in the first quadrant (xi > 0).

We digress momentarily to discuss the following proposition which gives a solution
to a new family of PDEs, and will be used to come up with a “good guess” (solution)
for our difference equations.
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Proposition 2. Let M,N ≥ 0 and P be a multivariate polynomial where the degree

of each monomial is N . Let X =
k∑

j=1

xj. Then, the solution of

k∑
j=1

xj
∂u

∂xj

= (lnX)M · P (x1, x2, . . . , xk)

XN
(7)

is

u(x1, x2, . . . , xk) =

(
(lnX)M+1

M + 1
+ C

)
· P (x1, x2, . . . , xk)

XN
,

for any constant C.

Proof. We solve this by the method of characteristics. Suppose u = f(x1, x2, . . . , xk)
is a differentiable function of x1, . . . , xk, where each xi is parameterized as a function
of t. Then, by the chain rule, u is a differentiable function of t and

du

dt
=

k∑
i=1

∂f

∂xi

dxi

dt
.

In order to find the solution, we solve

dxi

dt
= xi, 1 ≤ i ≤ k, and

du

dt
= (lnX)M

P (x1, x2, . . . , xk)

XN
.

Then, xi = cie
t where ci are constants. Substitute this into

du

dt
to get

du

dt
= ln

(∑
i

cie
t

)M
P (c1, c2, . . . , ck)

(
∑

i ci)
N

.

The last equality holds because P is a multivariate polynomial where the degree
of each monomial is N . The final step is to integrate both sides of the differential
equation to find:

u =
P (c1, c2, . . . , ck)

(
∑

i ci)
N

∫
ln

(∑
i

cie
t

)M

dt

=
P (c1, c2, . . . , ck)

(
∑

i ci)
N

(
ln (
∑

i cie
t)

M+1

M + 1
+ C

)

=
P (x1, x2, . . . , xk)

XN

(
(lnX)M+1

M + 1
+ C

)
, for any constant C.
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We will now make use of a more readily available solution to this family of PDEs to
obtain a solution for our difference equations (5) and (6).

For (5), after comparing the target (5) to the PDE (7), we apply the proposition with
M = 0 and N = 0. The obtained solution u = ln(X)+C reminds us of the Harmonic
number in a discrete version. Thus, our guess is Ã1(s1, s2, . . . , sk) = H(S) + C.
Of course, we have to verify that this solution satisfies (5), which obviously does.
Moreover, the initial condition A1(0, 0, . . . , 0) = 0 implies that the constant C = 0.

Therefore, the particular solution to (5), which is the coefficient of our leading term
solution, is

A1(s1, s2, . . . , sk) = H(S).

The target (6) suggests us to apply the proposition with M = 0 and N = 2, which

gives the solution u = − (ln (X) + C)

∑
i<j xixj

X2
. Thus, a guess for the discrete

analogue is

Ã0(s1, s2, . . . , sk) = −
(H(S) + C)

∑
i<j sisj

S(S − 1)
. (8)

(Notice the difference between the denominators S(S− 1) and X2 first arising in the
target (6) and the PDE (7), and later appearing again in their solutions.)

In order to verify that this guess is indeed the solution of (6), there is one tricky
calculation, which will be dealt with in the next lemma.

Lemma 3. Assume Ã0(s1, s2, . . . , sk) as in (8). Then,

k∑
j=1

sjÃ0(V{j}) = −H(S − 1) + C

(S − 1)

(∑
i<j

sisj

)
.

Proof. Consider vectors V{} = [s1, s2, . . . , sk] and V{j} = [s′1, s
′
2, . . . , s

′
k] = [s1, s2, . . . , sj−

1, . . . , sk]. Then,

k∑
j=1

sjÃ0(V{j}) =
k∑

j=1

sj

[
−H(S − 1) + C

(S − 1)(S − 2)
·
∑
i<l

s′is
′
l

]
= −H(S − 1) + C

(S − 1)(S − 2)
·

k∑
j=1

sj
∑
i<l

s′is
′
l,

and ∑
i<l

s′is
′
l =
∑
i<l

sisl −
k∑

i=1

si + sj.

Therefore,

k∑
j=1

sj
∑
i<l

s′is
′
l = S

∑
i<l

sisl − S2 +
k∑

j=1

s2j = (S − 2)
∑
i<l

sisl,

and the result is immediate.
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We are now ready to verify the solution of (6). Substitute our guess (8) into the
l.h.s. of (6), and use the lemma to obtain

k∑
j=1

sj

(
Ã0(V{})− Ã0(V{j})

)
= −

(H(S) + C)
∑

i<j sisj

S − 1
+

(H(S − 1) + C)
∑

i<j sisj

(S − 1)

=

∑
i<j sisj

S − 1
(H(S − 1)−H(S)) =

∑
i<j

sisj

(
1

S
− 1

S − 1

)
,

and so (8) is indeed a solution of (6).

The unique value of C can be determined by making sure that the initial condition
A0(1, 0, . . . , 0) = 0 is satisfied. In particular, in order to make this point a removable
singularity, it is necessary that H(1) + C = 0, and so C = −1.

Thus, the particular solution of (6), which is the coefficient of our second leading
term solution, is

A0(s1, s2, . . . , sk) = −
(H(S)− 1)

∑
i<j sisj

S(S − 1)
.

Having obtained the closed-form formula for A1 and A0, Theorem 1 has been verified.

The next corollary, which is an immediate corollary of Theorem 1, provides the
solution to our original problem when all the k players start with empty hands.

Corollary 4.

M (n, n, . . . , n) ≈ nH(kn)− (H(kn)− 1)(k − 1)n

2(kn− 1)
.

2.5 Remarks on the remainder

The formula given in Theorem 1 becomes more precise as n increases. For ex-
ample, with n = 30, the exact value of M(30, 30, 30) computed numerically from
(2) is 151.0692567, while Theorem 1 gives 151.1009707. The general formula for
M(30, 30, 30) computed from (2) with symbolic n is

M(30, 30, 30) = 5.082570603n− 1.376147394− 0.9078106927

n
− 1.231342610

n2

− 2.159152821

n3
− 4.180289796

n4
− 7.669304559

n5
− 7.488122252

n6

+ . . . .

9



3 Second proof of the theorem: Insight into the

leading term

In this section, we give an alternative proof for the leading term solution from the
probability point of view.

Consider the coupon collector’s problem in a continuous-time setting. Start with
one player, who is missing s coupons. Through the concept of interarrival times of

an inhomogeneous counting process, let W1 ∼ exp
(
λ1 =

s

n

)
be the time of the first

arrival of the coupon. Similarly, let Wi ∼ exp

(
λi =

s− i+ 1

n

)
be the interarrival

time (elapsed time) between the (i − 1)th and the ith arrivals, for i = 2, . . . , s. It
follows that the expected completion time for this particular player satisfies

E[X(s)] = E

[
s∑

i=1

Wi

]
=

s∑
i=1

1

λi

=
s∑

i=1

n

s− i+ 1
= nH(s).

The concept of interarrival times can be extended to find the expected maximum
time for the k coupon collectors’ problem. Assume that player j is still missing sj
coupons. Let T1 be the time of the first arrival of a coupon, regardless of which player
finds it. Recall a classical property that the minimum of independent exponential
random variables is again exponential with the rate parameter equals to the sum of

the rates. Then, T1 ∼ exp

(
λ1 =

S

n

)
, where S = s1 + s2 + · · ·+ sk. In addition, let

Ti be the interarrival times between the (i− 1)th and the ith arrivals of the coupon,
regardless of which player finds the coupon. By the independence of interarrival

times and the player who finds the coupon, Ti ∼ exp

(
λi =

S − i+ 1

n

)
. Finally, the

completion time of the slowest player is simply

E[max{X1(s1), . . . , Xk(sk)}] = E

[
S∑

i=1

Ti

]
=

S∑
i=1

1

λi

=
S∑

i=1

n

S − i+ 1
= nH(S). (9)

Here, things simplify as two events cannot occur at the same time, and it does not
matter which player finds a next new coupon as the rate parameter of the counting
process is based solely on the total number of coupons still missing at that time.

One can write a recurrence relation for the continuous-time setting as

M (s1, s2, . . . , sk) =
k∑

j=1

(sj
S

)
M(s1, s2, . . . , sj − 1, . . . , sk) +

n

S
, (10)
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where S =
∑k

i=1 si.

An interpretation of the recurrence relation is now given. Since the rate parameter

of a new arrival is λ =
S

n
, the last term

n

S
represents the mean arrival time of a

new coupon (regardless of which player finds it). Moreover, by recalling another
classical property of the exponential distribution concerning the probability of jth

random variable being smallest among others , the term
sj
S

is the probability that

player j is the one who finds the next new coupon, as one would expect. While
no such explanations can be given when we solved the difference equations in the
discrete-time setting, the continuous-time setting allows us to gain full insight into
the recurrence relation and the solution we already obtained.

Last but not least, the fact that the solution (9) coincides with the leading term
solution of the discrete-time recurrence is not a mere happenstance. In fact, the
recurrence relation for the leading term solution can be obtained by dropping those
terms in (2) which correspond to “multiple players finding a new coupon in the next
box”. As a result, we arrive at precisely the same recurrence (10).

4 Miscellaneous topics

The final section contains a miscellaneous selection of results related to the k coupon
collectors’ problem.

4.1 The fastest player

The expected number of boxes required for the fastest player to complete the whole
collection turns out to be a corollary of our main theorem.

Corollary 5. The expected number of boxes required for the fastest player to collect
all n coupons, E [min{X1(s1), . . . , Xk(sk)}], is given by

k∑
i=1

M(si)−
∑
i<j

M(si, sj) +
∑
i<j<l

M(si, sj, sl) + · · ·+ (−1)k−1M (s1, s2, . . . , sk)

= n

(
k∑

i=1

H(si)−
∑
i<j

H(si + sj) +
∑
i<j<l

H(si + sj + sl) + · · ·+ (−1)k−1H

(
k∑

i=1

si

))
+O(1).

Proof. Retaining only the leading term, the result follows immediately from the
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maximum-minimum identity :

min{X1, . . . , Xk} =
k∑

i=1

Xi −
∑
i<j

max{Xi, Xj}+
∑
i<j<l

max{Xi, Xj, Xl}

+ · · ·+ (−1)k−1max{X1, . . . , Xk},

and the linearity of expectation. The remainder is O(1) as we keep only the leading
term in the solution.

Figure 1 shows the graphs of the expected numbers of boxes required for the slow-
est player M(n, n, . . . , n) and fastest player m(n, n, . . . , n) to complete the whole
collection of n coupons, where the number of players ranges from k = 1, 2, . . . , 40.

Figure 1: The expected number of boxes required for the slowest (top 40 lines) and
fastest players (bottom 40 lines) to complete the whole collection of n coupons. Each
line represents a different number of k players: the smallest value (k = 1) is blue
and the largest (k = 40) red. The darkest line in the middle is a separator line
corresponding to k = 1 player, for which the slowest and fastest players are the same
person.

4.2 Probability of being the slowest player

We start with the probability of being the slowest player. Let P1 (s1, s2, . . . , sk) be the
probability that the first player is the last person to complete the whole collection,
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i.e. X1 (s1) = max{X1(s1), X2(s2), . . . , Xk(sk)}. Then, we can write a recurrence

P1 (s1, s2, . . . , sk) =
∑

I⊆{1,2,...,k}

[∏
j∈I

sj
n

][∏
j ̸∈I

(
1− sj

n

)]
P1 (VI)︸ ︷︷ ︸

players in I found a new coupon

, (11)

with the initial conditions P1(s1, 0, . . . , 0) = 1 if s1 ≥ 0, and P1(0, s2, . . . , sk) = 0 if
some of si > 0, and P1(s1, s2, . . . , sk) = 0 if at least one of si < 0.

The absence of +1 term in this recurrence as compared to (2) leads to the solution
of the form:

P1 (s1, s2, . . . , sk) = B0 +
1

n
B−1 +

1

n2
B−2 + . . . , (12)

where Bi, i ≤ 0 is a function of s1, s2, . . . , sk.

The next proposition finds the leading term solution B0. Having the solution written
in the form (12) explains the remainder term O

(
1
n

)
in the proposition.

Proposition 6. Let P1 (s1, s2, . . . , sk) be the probability that the first player is slowest
among the k players to collect the whole set of n coupons. Then,

P1 (s1, s2, . . . , sk) =
s1∑k
i=1 si

+O
(
1

n

)
.

Proof. Following the same procedure as in the proof of Theorem 1, one may prove this
statement by means of an algebraic recurrence relation. Nevertheless, we will alter-
natively prove the leading term solution using a combinatorial interpretation through
the continuous-time framework. The number of combinations where the first player
finishes last (i.e. the last coupon is found by the first player) is

(
s1−1+s2+s3+···+sk

s1−1,s2,s3,...,sk

)
, and

the probability of each combination is
s1!s2!s3! . . . sk!

(
∑k

i=1 si)!
(following from our discussion

in a continuous-time setting that
sj∑k
i=1 si

is the probability that player j is the one

who finds the next new coupon.

Thus,

P (the first player is slowest) =
s1!s2!s3! . . . sk!

(
∑k

i=1 si)!
·
(
s1 − 1 + s2 + s3 + · · ·+ sk

s1 − 1, s2, s3, . . . , sk

)
=

s1∑k
i=1 si

.

This completes the proof.
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4.3 Remarks on the remainder of probability

The formula given in Proposition 6 is more precise as n increases. For example, with
n = 50, the exact value of P1(24, 22, 14) computed numerically from the recurrence is
0.4039306738, while Proposition 6 gives 0.40. The general formula for P1(24, 22, 14)
computed from the recurrence with symbolic n is

P1(24, 22, 14) = 0.4 +
0.1904262018

n
+

0.2926113116

n2
+

0.6072298683

n3

+
1.461461046

n4
+

3.965909505

n5
+ . . . .

To conclude this work, the probability of being the fastest player, whose result is a
corollary to Proposition 6, will now be discussed.

Corollary 7. Let Q1 (s1, s2, . . . , sk) denote the probability that the first player is the
fastest player to finish, i.e. X1 (s1) = min{X1(s1), X2(s2), . . . , Xk(sk)}. Then,

Q1 (s1, s2, . . . , sk) = 1−
∑
1<i

s1
s1 + si

+
∑
1<i<j

s1
s1 + si + sj

−
∑

1<i<j<l

s1
s1 + si + sj + sl

+ · · ·+ (−1)k−1 s1
s1 + · · ·+ sk

+O
(
1

n

)
.

Proof. The proof is a straightforward application of the inclusion-exclusion principle
and Proposition 6.
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