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Abstract

We investigate the Sprague-Grundy sequences for two normal-play impartial games based on arithmetic functions, first
described by Iannucci and Larsson in a book chapter. In each game, the set of positions is N. In saliquant, the options are to
subtract a non-divisor. Here we obtain several nice number theoretic lemmas, a fundamental theorem, and two conjectures
about the eventual density of Sprague-Grundy values. In nontotient, the only option is to subtract the number of relatively
prime residues. Here we are able to calculate certain Sprague-Grundy values and start to understand an appropriate class
function.
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1. Introduction

In this paper, we study two of the games introduced by [2]. Their rules are as follows.

(a) Saliquant. Subtract a non-divisor: For n ≥ 1, opt(n) = {n− k : 1 ≤ k ≤ n : k - n}.

(b) Nontotient. Subtract the number of relatively prime residues: For n ≥ 1, opt(n) = {n − φ(n)}, where φ is Euler’s
totient function.

In each case, we examine the normal-play variant only, so the usual Sprague-Grundy theory applies. In particular, the
nim-value of a position n is recursively given by

SG(n) = mex{SG(x) | x ∈ opt(n)},

where mex(A) is the least nonnegative integer not appearing in A. Chapter 7 of [1] gives a readable overview for the
newcomer. Note that for games of no choice, such as nontotient, SG(n) calculates the parity of the number of moves
required to reach a terminal position. The sole terminal position for nontotient is 1.

2. Let’s play SALIQUANT!

Inaucci and Larsson give a uniform upper bound for nim-values of saliquant positions and show that odd positions attain
this bound:

Lemma 2.1 (Theorem 4 in [2]). In saliquant,

• If n is odd, then SG(n) = n−1
2

• For all n ≥ 1, SG(n) < n
2

Our task, therefore, will be to investigate the nim-values of even positions. The first few such values are:

n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
SG(n) 0 1 1 3 2 4 6 7 4 7 5 10 12 10 13 15 8 13 9 17 17
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First, we establish some particular cases where the nim-value is below the uniform upper bound given in the last part
of the next lemma.

Lemma 2.2. If 3 | n, then SG(2n) ≤ n− 2. If 5 | n, then SG(4n) ≤ 2n− 3.

Proof. If 3 | n, then 2n − 4 is the largest possible option of 2n. So by Lemma 2.1 all options have a nim-value of at most
n− 3. Hence SG(2n) ≤ n− 2.

Similarly, if 5 | n, then 4n − 6 is the largest possible option of 4n, with the exception of 4n − 3. So all options have a
nim-value of at most 2n− 4, or exactly 2n− 2. Hence SG(4n) ≤ 2n− 3.

Note that the former bound is sharp. For example, setting n = 15, we see that SG(30) is 13. Next we establish a uniform
lower bound.

Lemma 2.3. If p is the smallest prime divisor of n, then SG(n) ≥ SG(p−1p n); in particular, SG(2n) ≥ SG(n).

Proof. Let n− k < p−1
p n, where p is the smallest prime divisor of n. Then n

p < k < n, and so k - n. Hence n− k is an option
of n. n has every option which p−1

p n has. Thus, SG(n) ≥ SG(p−1p )n.

Corollary 2.1. SG(n) ≥ n−2
4 for all n.

Proof. Lemma 2.1 establishes this for odd n.
Next, if n = 2k, where k is odd, then Lemma 2.3 tells us that

SG(n) ≥ SG(k) = k − 1

2
=
n− 2

4
.

Now let n = 2mk, where k is odd and m ≥ 2. Then n − (k + 2), n − (k + 4), . . . , 1 are all options of n, with nim-values
1
2 (n− k − 3), 12 (n− k − 5), . . . , 0, respectively. Thus

SG(n) ≥ 1

2
(n− k − 1) ≥ 1

2

(
n− n

4
− 1
)
>

1

2

(n
2
− 1
)
=
n− 2

4
.

Next, we prove a key lemma about the nim-values of even positions.

Lemma 2.4. If SG(2n) = n− k, then 2k − 1 | n.

Proof. Suppose SG(2n) = n−k. Then 2n has no option of nim-value n−k. Since SG(2n−2k+1) = n−k, it is not an option.
In other words, 2k − 1 | 2n and hence 2k − 1 | n.

From here, we can establish nim-values of several particular cases of even numbers. To start, the previous result
immediately narrows the possibilities of double a prime or semiprime.

Corollary 2.2. Let p, q be odd primes, then

• SG(2p) = p− 1 or p− p+1
2 = p−1

2 ; and

• SG(2pq) = pq − 1, pq − p+1
2 , pq − q+1

2 , or pq − pq+1
2 = pq−1

2 .

We next refine the first bullet point.

Lemma 2.5. Let p ≥ 5 be prime. Then the only possible option of 2p with nim-value p−1
2 is p+ 1. Hence

• SG(p+ 1) = p−1
2 =⇒ SG(2p) = p− 1

• SG(p+ 1) 6= p−1
2 =⇒ SG(2p) = p−1

2 .

Note that if p = 3, then p+ 1 = 4 is not an option of 2p = 6.

Proof. Let x ∈ opt(2p) such that SG(x) = p−1
2 .

By Lemma 2.1, if x were odd, then we would have x = p, but p is not an option of 2p. So let x = 2n for some n. By Lemma
2.4, since SG(2n) = p−1

2 = n− (n− p−1
2 ), we have 2(n− p−1

2 )− 1 | n, and so 2n− p | n. On one hand, this implies that n < p.
On the other hand, it means that we can write n = d(2n − p) = 2dn − dp for some d ∈ N. Then n | dp and d | n. Now

since n < p and p is prime, we have n | d. Finally, since d | n, this means n = d, and so 2n− p = 1 or x = 2n = p+ 1.

In fact, this is enough to generate infinitely many examples for which our uniform lower bound is attained.
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Theorem 2.1. If p is prime and p ≡ 5 mod 6, then SG(2p) = p−1
2 .

Proof. Let p be prime where p ≡ 5 mod 6. We claim that SG(p + 1) 6= p−1
2 , and so the previous lemma implies that

SG(2p) = p−1
2 .

Indeed, since p ≡ 5 mod 6, we have p+ 1 ≡ 0 mod 6. In particular, 1, 2, 3 | p+ 1, so the largest possible option of p+ 1 is
(p+1)−4 = p−3. So by Lemma 2.1, for all y ∈ opt(p+1), SG(y) < y

2 ≤
p−3
2 , that is SG(y) ≤ p−5

2 . Hence SG(p+1) ≤ p−3
2 .

Corollary 2.3. There are infinitely many n ∈ N such that SG(n) = n−2
4 .

Proof. It is well known that there are infinitely many primes p = 5 mod 6. For each of these p, letting n = 2p, we have
SG(n) = SG(2p) = p−1

2 = n−2
4 .

It is possible to keep refining this inquiry about numbers which are twice an odd. For example Corollary 2.2 could be
extended for more than 2 odd prime factors, but we don’t see how helpful it is. Instead, we investigate the remaining cases
by decomposing even numbers as an odd number times a power of 2. As a first step, we can compute exact nim-values in
the case that the odd part is 1, 3, 5, or 9.

Lemma 2.6. Let b ≥ 1. Then SG((2a+ 1)2b) = (2a+ 1)2b−1 − a− 1 for a = 0, 1, 2, 4.

Proof. This can be checked by hand for the cases when b = 1 or b = 2, so let b ≥ 3, and consider the options of (2a+ 1)2b

All odd numbers greater than (2a + 1) are non-divisors of (2a + 1)2b, so the odd numbers 1, 3, . . . , (2a + 1)2b − (2a + 3)

are all options with nim-values 0, 1, . . . , (2a+ 1)2b−1 − a− 2, respectively.
We claim that there is no option with nim-value (2a+1)2b−1−a−1. Indeed (2a+1)2b−2a−1 is not an option, and is the

only odd number with nim-value (2a+ 1)2b−1 − a− 1. Next, note that b ≥ 3 and a = 0, 1, 2, 4 i.e. (2a+ 1) = 1, 3, 5, 9. Hence
all even numbers less than (2a+1) divide (2a+1)2b and the only even options are less than or equal to (2a+1)2b − 2a− 2.
By Lemma 2.1, their nim-values are less than (2a+1)2b−2a−2

2 = (2a+1)2b−1− a− 1. Thus, there is no option with nim-value
(2a− 1)2b−1 − a− 1, and SG((2a− 1)2b) = (2a− 1)2b−1 − a− 1.

We now see that there are infinitely many even values for which our uniform upper bound is obtained:

Corollary 2.4. Let b ≥ 1. Then SG(2b) = 2b−1 − 1. In particular, there are infinitely many m for which SG(n) = n−2
2 .

Note that the above proof does not work, for example, when a = 3 i.e. 2a+ 1 = 7, since 6 < 2a+ 1, and 6 - 7(2b). In fact
SG(14) = 6, not (2a+ 1)2b−1 − a− 1 = 3. Next we obtain a slightly weaker result when a = 10 and 2a+ 1 = 21.

Lemma 2.7. Let b ≥ 1. Then SG(21(2b)) = 21(2b−1)− 11 or 21(2b−1)− 4.

Proof. In the case b = 1, we see SG(42) = 17. For b ≥ 2, consider the options of 21(2b). The odd numbers 1, 3, . . . , 21(2b)− 23

and 21(2b) − 19, . . . , 21(2b) − 9 are all options with nim-values 0, 1, . . . , 21(2b−1) − 12 and 21(2b−1) − 10, . . . , 21(2b−1) − 5,
respectively. The numbers 21(2b) − 21 and 21(2b) − 7 with nim-values 21(2b−1) − 11 and 21(2b−1) − 4 are not options, and
all larger odd numbers have nim-values greater than 21(2b−1)− 4.

On the other hand, since 2, 4, 6 | 21(2b), Lemma 2.1 implies that any even options have nim-values less than 21(2b)−8
2 =

21(2b−1)− 4. Hence SG(21(2b)) = 21(2b−1)− 11 or 21(2b−1)− 4.

We end this section by showing that twice a Mersenne number is above the uniform lower bound. Note that ifm = 2n =

2(2b − 1) then m−2
4 = n−1

2 = 2b−1 − 1.

Lemma 2.8. Let b ≥ 3. Then SG(2(2b − 1)) > 2b−1 − 1. In particular, if 2b − 1 is prime, then SG(2(2b − 1)) = 2b − 2.

Proof. By Corollary 2.4, SG(2b) = 2b−1 − 1, so we just need to show that 2b ∈ opt(2(2b − 1)).
Suppose otherwise and that 2(2b − 1) − 2b | 2(2b − 1). Then 2b − 2 | 2(2b − 1). Thus either 2b − 2 and 2b − 1 share a

common factor and so 2b − 2 = 1, or 2b − 2 | 2 and so b ≤ 2. Both cases are impossible.
In the case 2b − 1 is prime, Corollary 2.2 implies SG(2(2b − 1)) = 2b − 2.

3. The fundamental theorem of SALIQUANT and density of values

Finally, we obtain our most general statement about nim-values of Saliquant. The two corollaries which follow were
actually proved first, inspired by the proof of Corollary 2.1.
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Theorem 3.1. For all a ≥ 0, b ≥ 1,

SG
(
(2a+ 1)2b

)
=

m

2m+ 1

(
(2a+ 1)2b − 1

)
+

1

2m+ 1

(
(2a+ 1)2b−1 − a− 1

)
= (2a+ 1)2b−1 − 1

2

(
2a+ 1

2m+ 1
+ 1

)
for some non-negative integer m. Thus

SG
(
(2a+ 1)2b

)
= (2a+ 1)2b−1 − d+ 1

2
, where d is a factor of 2a+ 1.

This theorem unifies several edge cases, as well. If we set a = 0, then we must have d = 1, obtaining Corollary 2.4. Let
f(a, b,m) be the function given by Theorem 3.1. If we set b = 0, then f(a, b,m) is never an integer, but limm→∞ f(a, b,m) =
n−1
2 , matching Lemma 2.1.

Fixing a and b, f(a, b,m) is a linear rational function in m, thus monotonic for m ≥ 0, and it is easily checked that it
is increasing. Hence its minimum is obtained when m = 0, with an upper bound given by m → ∞. Thus we have the
following corollary, which itself is a generalization of Lemma 2.6.

Corollary 3.1. For all a, b ≥ 1,

(2a+ 1)2b

2
− a− 1 ≤ SG

(
(2a+ 1)2b

)
<

(2a+ 1)2b

2
− 1

2
.

The upper bound is the same as in Lemma 2.1. If we fix a and let b grow large, the lower bound is an asymptotic
improvement over Corollary 2.1 from O(n4 ) to O(n2 ). Furthermore, we will see experimentally below that all values of
f(a, b,m) are obtained. To illustrate the theorem, set b = 1 to obtain all possible nim-values of even numbers which are
not multiples of 4:

Corollary 3.2. For all a ≥ 1, SG(4a+ 2) must have the form

(4m+ 1)a+m

2m+ 1

(
= a,

5a+ 1

3
,
9a+ 2

5
,
13a+ 3

7
,
17a+ 4

9
,
21a+ 5

11
, . . .

)
for some m ≥ 0.

Proof of Theorem 3.1. Suppose a, b ≥ 1. Let X = SG
(
(2a+ 1)2b

)
. Then

X = ((2a+ 1)2b−1)− ((2a+ 1)2b−1 −X),

so by Lemma 2.4, we have (
2
(
(2a+ 1)2b−1 −X

)
− 1
)
| (2a+ 1)2b−1.

Thus there is some Q1 so that
Q1(a2

b+1 + 2b − 2X − 1) = (2a+ 1)2b−1.

Since (a2b+1 + 2b − 2X − 1) is odd, 2b−1 | Q1. Pick Q2 so that Q22
b−1 = Q1. This gives

Q2(a2
b+1 + 2b − 2X − 1) = 2a+ 1.

Next since Q2 is odd, we can set Q2 = 2m+ 1 for some m ≥ 0, giving

(2m+ 1)(a2b+1 + 2b − 2X − 1) = 2a+ 1.

Finally, solving for X gives the desired result.

Now that we know the specific possible values SG(n) can take based on the decomposition n = (2a + 1)2b, a natural
question is how these values are distributed. For a given b > 0, m ≥ 0, define

Sb,m = {a ∈ N | SG((2a+ 1)2b) = f(a, b,m)}.

The experimental density of Sb,m for b = 1, 2, 3, 4 and m = 0, 1, 2, 3, 4 are shown in Table 1. For b = 1, we measured up to
a = 5000; for b = 2, 3, up to a = 2000; and for b = 4, up to a = 1000. The associated Maple program can be found at the third
author’s website http://www.thotsaporn.com.
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Figure 1: The first 5000 nim-values of saliquant. The slopes of the labelled lines are (A) 1
2 , (B) 1

4 , (C) 3
8 , (D) 5

12 , (E) 7
16 .

In Figure 1, we can see some of these values, with the corresponding labels given in Table 1. For example, consider the
entry of the table marked (C). It says that the density of numbers of the form x = 8a+ 4 for which SG(x) = 3a+ 1 is 0.561.
Then we can see that the line in the figure with slope 3

8 (also marked (C)) has about half density. Contrast with the entry
marked (D), corresponding to the line with slope 5

12 . It is very sparse, as seen in the figure. Notice that the y-intercept of
each of these lines corresponds to a = − 1

2 , which in each case gives

f

(
−1

2
, b,m

)
=

1

2m+ 1

(
−m2b − 2b−1 +

1

2
+m2b −m+ 2b−1 − 1

)
=
−m− 1

2

2m+ 1
= −1

2
,

which is ok to be negative, since the game is only meaningfully defined on positive numbers. Finally, the line marked (A)
is y = x−1

2 , which includes all odd x and some even x, per Lemma 2.1 and Corollary 2.4.

Table 1: Experimental values of Sb,m. The labels (B)—(E) match Figure 1.

SG(4a+ 2) density SG(8a+ 4) density SG(16a+ 8) density SG(32a+ 16) density
m = f(a, 1,m) (a ≤ 5000) = f(a, 2,m) (a ≤ 2000) = f(a, 3,m) (a ≤ 2000) = f(a, 4,m) (a ≤ 1000)
0 a (B) 0.532 3a+ 1 (C) 0.561 7a+ 3 (E) 0.540 5a+ 7 0.638

1
5a+ 1

3
(D) 0.026

11a+ 4

3
0.056

23a+ 10

3
0.090

47a+ 22

3
0.069

2
9a+ 2

5
0.037

19a+ 7

5
0.044

39a+ 17

5
0.050

79a+ 37

5
0.046

3
13a+ 3

7
0.061

27a+ 10

7
0.049

55a+ 24

7
0.046

111a+ 52

7
0.043

4
17a+ 4

9
0.022

35a+ 13

9
0.030

71a+ 31

9
0.015

143a+ 67

9
0.010
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We next show a straightforward upper bound for these densities, noting that each of the values in Table 1 are well below
this bound.

Lemma 3.1. Given b ≥ 1, m ≥ 0, the density of Sb,m is at most 1
2m+1 .

Proof. Fix b ≥ 1, m ≥ 0, and consider

(2m+ 1)f(a, b,m) =
(
a(m2b+1 + 2b − 1) +m(2b − 1) + (2b−1 − 1)

)
= a

(
(2m+ 1)2b − 1

)
+ (2m+ 1)2b−1 −m− 1

≡ −a−m− 1 mod (2m+ 1)

Thus f(a, b,m) is only an integer when a ≡ m mod (2m+1), and so 1
2m+1 is an upper bound for how frequently SG((2a+1)2b)

can attain this value.

Given the values in Table 1, we suspect that most of these values are actually 0:

Conjecture 3.1. For a given b > 0,

• If m = 0, Sb,m has positive density, and

• If m > 0, Sb,m has density 0, but is nonempty.

We can also look at how fixing a and b affects the value of m. Define M(a, b) = m where SG((2a+ 1)2b) = f(a, b,m), and
consider Table 2.

Table 2: Experimental values of M(a, b).

a = 3 a = 4 a = 5 a = 6 a = 7 a = 8 a = 9 a = 10 a = 11
b = 1 3 0 0 6 2 0 0 1 0
b = 2 0 0 0 0 0 8 0 1 0
b = 3 0 0 0 6 0 0 9 0 0
b = 4 0 0 0 0 0 0 0 0 11
b = 5 0 0 0 0 0 0 0 0 0
b = 6 0 0 0 0 0 0 9 0 0
b = 7 0 0 0 0 0 0 0 0 0
b = 8 0 0 0 0 0 0 0 0 0
b = 9 0 0 0 0 0 0 0 0 0
b = 10 0 0 0 0 0 0 0 0 0

If one imagines running along any row of Table 2 and tracking the distribution of m, they would get the densities
achieved in Table 1 as a tends toward infinity. For our second conjecture, we instead consider the behavior of m rather
than of a, noting that it is difficult to generate more data as the values grow exponentially as b increases.

Given the sparsity of each column, we suspect that in each column all but a finite number of values are zero.

Conjecture 3.2. For a given a > 0, for sufficiently large b, M(a, b) = 0, in which case

SG((2a+ 1)2b) = (2a+ 1)2b−1 − a− 1.

Note that Lemma 2.6 proves a stronger form of the conjecture for a = 0, 1, 2, 4, and Lemma 2.7 shows that when a = 10

we have either m = 0 or m = 1.

4. NONTOTIENT

Denoting φ(n) = |{1 ≤ k ≤ n | k is not a factor of n}|, [2] also define two games based on φ(n):

• Totient: opt(n) = φ(n)

• Nontotient: opt(n) = n− φ(n)

In this section, we make some headway in understanding nontotient. First recall that φ(ab) = φ(a)φ(b), and for
prime p, φ(pk) = pk−1(p − 1). Thus if n = pk11 . . . pkmm , we have φ(n) =

∏
pi
ki−1(pi − 1). In particular φ(1) = 1. Define

g(n) := opt(n) = n− φ(n). We immediately obtain:
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Lemma 4.1. For n > 2, φ(n) is even, and so g(n) has the same parity as n.

For the rest of the section, let p and q always represent primes. As noted in [2], g(pk) = pk−1. Hence the game on pk

terminates after k moves and so SG(pk) = 0 if and only if k is even. They also note that g(pkq) = pk−1(q+p−1), and so in the
case that q+p−1 is a power of p, this becomes easy to compute. Consider for example the prime pairs (p, q) = (2, 7) or (3, 7).
We can extend this as follows. First note that

g(pkql) = pkql − pk−1(p− 1)ql−1(q − 1) = pk−1ql−1(p+ q − 1).

Then we have the next result.

Theorem 4.1.

(a) If q = pb − p+ 1 where b is even, then SG(pkql) = 0 if and only if q is even.

(b) If q = pb − p+ 1 where b is odd, then SG(pkql) = 0 if and only if q + l is even.

Proof. In this case g(pkql) = pk−1ql−1
(
p+ (pb − p+ 1)− 1

)
= pk+b−1ql−1. So after l moves, the position will be pk+l(b−1),

and thus the game terminates after k + l(b− 1) + l = k + lb moves.

Some prime pairs (p, q) that satisfy part (a) are (2, 3), (3, 7), (7, 43), (13, 157), (3, 79), (11, 14631), (3, 727). For part (b) we
have (2, 7), (7, 337), and (19, 2476081). Part (b) also applies to each pair (2, 2p−1) for each Mersenne prime 2p−1. As a next
step, one might analyze cases which reduce to one of the above cases in a predictable number of steps. For example

Corollary 4.1. SG(2k5) = 0 if and only if k is odd.

Proof. Here g(2k5) = 2k−1(6) = 2k3, and so the result follows by Theorem 4.1 (a).

The authors of [2] were able to use Harold Shapiro’s height function (see [3]), H(n) = H(φ(n)) + 1, to give a method
for computing the nim-value of any natural number in totient. Motivated by this success, they suggest analyzing a class
function dist(n) = i, which gives the least i for which gi(n) is a prime power. We instead analyze the function C(n) = i if
gi(n) = 1. The initial values are:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C(n) 0 1 1 2 1 3 1 3 2 4 1 4 1 4 2 4 1 5 1 5

Lemma 4.2. C(4n) = C(2n) + 1.

Proof. Note that for k > 1 and m odd, φ(2km) = φ(2k)φ(m) = 2k−1φ(m) = 2φ(2k−1m). Hence we have

g(4n) = 4n− φ(4n) = 4n− 2φ(2n) = 2(2n− φ(2n)) = 2g(2n).

So, if gi(2n) = 1, then gi(4n) = 2, which means gi+1(4n) = 1.

Corollary 4.2. SG(4n) = 1− SG(2n).

For example, knowing that SG(10) = 0, we again obtain Corollary 4.1. We end this section with some observations
about the function C(n) for even n.

Lemma 4.3. If n is even and 2i−1 < n ≤ 2i, then C(n) ≥ i.

The least value we don’t see equality is C(30) = 6.

Proof. We proceed by induction on i, observing initial cases in the table above. Suppose 2i−1 < n ≤ 2i and n = 2k. Then
φ(n) ≤ k, so g(n) ≥ k > 2i−2. By Lemma 4.1 g(n) is also even, so we have by induction that C(g(n)) ≥ i − 1. Hence
C(n) ≥ i.

Lemma 4.4. If p is an odd prime, then C(2p) = C(2(p+ 1)).

Proof. We have g(2p) = p+ 1, so C(2p) = C(p+ 1) + 1 = C(2(p+ 1)), by Lemma 4.2.

The first time the conclusion does not hold is when p = 15, since C(30) = 6 and C(32) = 5.

Theorem 4.2. Let i ≥ 1. The set Si = {C(n) | 2i−1 ≤ n ≤ 2i and n is even} is an interval of N.
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Proof. We proceed by induction, again noting the initial values in the chart above. For each i ≥ 1, Lemma 4.3 implies that
the minimal possible value of Si is i, and this is in fact obtained by C(2i).

Now let i ≥ 2, and suppose that the maximal value in Si−1 is M . By induction Si−1 = {i− 1, i, . . . ,M}. Lemma 4.2 then
implies that {i, i+ 1, . . . ,M + 1} ⊆ Si.

Next suppose that {i, i+1, . . . ,M +1} 6= Si. Then there is some even 2i−1 ≤ y ≤ 2i for which C(y) > M +1. In this case,
since g(y) is even and C(g(y)) > M , we must have 2i−1 ≤ g(y). Thus C(g(y)) = C(y)− 1 ∈ Si.
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