Chapter 10 Simple Linear Regression Analysis

1 Notations

$$SS_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$$
$$SS_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$$
$$SS_{yy} = \sum (y_i - \bar{y})^2 = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$$

2 Simple Regression Model

 $\hat{y} = b_0 + b_1 x$

where
$$b_1 = \frac{SS_{xy}}{SS_{xx}}$$

and $b_0 = \bar{y} - b_1 \bar{x}$

3 ANOVA Table and an F Test for slope

Source	SS	df	MS	F
Regression (b_1)	$SSR = \sum (\hat{y}_i - \bar{y})^2$	1	$MSR = \frac{SSR}{1}$	$F = \frac{MSR}{MSE}$
Residual	$SSE = \sum (y_i - \hat{y}_i)^2$	n-2	$MSE = \frac{SSE}{n-2}$	
Total	$SSTO = \sum (y_i - \bar{y})^2$	n-1		

Note:

- 1. SSTO is called Total variation, SSR is called Explained variation, SSE is called Unexplained variation
- $2. \ SSTO = SSR + SSE$
- 3. $SSTO = SS_{yy}$
- 4. The critical value F_{α} can be found with $df_1 = 1$ and $df_2 = n 2$

4 Other Formulas

4.1 Standard Error: s

$$s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-2}}$$

4.2 Relation between SSR and b_1

$$SSR = \frac{SS_{xy}^2}{SS_{xx}} = b_1 SS_{xy}$$

4.3 Simple Coefficient of Determination

$$r^2 = \frac{SSR}{SSTO} = \frac{SS_{xy}^2}{SS_{xx}SS_{yy}}$$

4.4 Simple Correlation Coefficient

 $r = \pm \sqrt{r^2}$, where the sign is up to the slope b_1