
Research Statement

Thotsaporn Aek Thanatipanonda

August 3, 2013

My research interest is in automated proving of theorems in combinatorics. Or at least us-
ing computers to do their best assisting humans to solve the problems. This includes: making
conjectures, giving numerical evidence, and doing symbolic computations. I like many areas of
combinatorics, my favorites being Combinatorial Game theory, Ramsey theory, and the theory of
partitions.

1 Dissertation Research

Richard Hamming, a great applied mathematician of the last century, said “the purpose of comput-
ing is insight, not numbers”. Understanding makes me feel good. Computation gives me insight in
two different ways. First the act of programming makes me understand the problem much better,
and at a deeper level, and second, the output often leads to further understanding. Once we collect
all the information, we see the big picture without worrying about the details of calculations. I like
to solve challenging problems, and it is always the case that knowing computer programming helps
the calculational part goes smoother.

During my graduate years, I learned the philosophy and methodology of using computers in
mathematical research, specifically symbolic computation and automated proving, from Prof. Doron
Zeilberger, my advisor. In my opinion, it is not very important in what mathematical area I am
working on, since the method and experience gained in doing computer-assisted and computer-
generated research in one area are likely to be transferable to other areas.

The “Toads and Frogs” game: I do research in combinatorial game theory. The modern the-
ory was developed by J.Conway, E.Berlekamp, R.Guy, who wrote the classic book Winning Ways,
that mostly dealt with partizan games, and by Aviezri Fraenkel and his many students, who study
impartial games.

I started my research by investigating “Toads and Frogs”. In 1994, Jeff Erickson made five
intriguing conjectures [3]. In my paper (joint with my advisor), [15], we proved one of Erickson’s
conjectures. In another paper of mine, [14], [12] ,I settled three others, two positively and one
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negatively. In the process, I proved much more general results. More importantly, we discovered a
new technique that allowed computers to conjecture and prove values of many families of positions,
completely automatically. We called it the “Finite State Method”. In the past, mathematicians
had a hard time proving the values of positions by logical reasoning. Once computers are taught
how to do this “reasoning”, they can do much more, of course. I implemented all this in the com-
puter algebra system Maple. My program can also determine a winning move (if it exists) in each
position, by using the recurrence relation for each of the positions.

Problems on Schur Triples: Schur’s theorem is one of the “super six” theorems in Ramsey
theory mentioned in Ron Graham, Bruce Rothschild, and Joel Spencer’s famous monograph. The
Schur number, s(r), is the smallest number such that for any r-coloring of the set 1, 2, ..., s(r), there
must be a monochromatic solution to the equation x + y = z. A triple (x, y, z) is called a Schur
triple. Only the first four values are currently known: s(1) = 2, s(2) = 5, s(3) = 14, s(4) = 45. Even
s(5) is unknown. It is a natural question, asked by Ron Graham, what is the least number of Schur
triples in {1, ..., n} in a 2-coloring, as n → ∞. This problem was solved independently by [7], [8],
who shared the 100$ prize offered by Graham. Yet another proof appeared later [2]. The answer is
n2

22
+ O(n).

Ron Graham further asked about the minimum number of monochromatic triples (x, y, x + ay)
in 2-colorings of [1, n]. I wrote a Maple program to find the optimal coloring when n is small.
After finding the pattern, I developed a method that I called “greedy calculus”, to calculate “good”
colorings which gives upper bounds. Then I used another method involving calculus that gives
lower bounds. So far the upper bounds and lower bounds do not match. But these upper bounds
are conjectured to be sharp. I also applied this algorithm to the original Schur triples, but with
r-colorings, to get upper bounds which I suspect to be sharp. These considerably improve previous
bounds due to A. Robertson. These results are in [13].

Moment Calculus: The expectation functional is a powerful tool to study combinatorial
objects, and often gives you quite useful information. To find higher moments, the computation
gets complicated and we need computers to do symbolic computation for us. The technique has
already been demonstrated in [16], [17], [18], [1]. Once we find high enough moments, they could
actually be useful for calculating lower bounds for enumerating combinatorial objects (see [17]).
I have calculated the higher moments of the Ramsey graph of K3 and K4 on n vertices for the
r-coloring of edges of the complete graph, the second moment of Schur Triples with r-coloring on
[1, n]. The results are on my website.

2 Post Graduate School

Evaluating Determinant: In the mid 1970’s, Mathematician started to relate counting problems
from combinatorics, especially in the area of plane partitions, to the evaluation of certain deter-
minant. During the Montreal Conference in 1985, Richard Stanley raised the problems concerned
the enumeration of “symmetry classes” of plane partitions which later be published, [9] and [10].
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Today all of the problems in [10] were solved. The last standing problems was solved earlier this
year in [6] using Zeilberger Algorithm. I have a chance to work with Koutchen, one of the author
of [6], in which a collaboration turned out to be fruitful. We solved three six-years-old-conjectures
published by Christian Krattenthaler in his famous article, [5], related to evaluating determinants.
The results are in [4].

Ramsey Multiplicity: As a problem along the same lines as my work on (generalized) Schur
triples mentioned above, we can ask a similar problem related to Ramsey numbers instead of Schur
numbers. For a fixed number k, find the least number of monochromatic Kk for any 2-edge-coloring
graph in Kn where n→∞. The easy solution for K3 is known. The answer is n3

24
+ O(n2) which is

the same as the average. The answer for k ≥ 4 is unknown. I observed some general results of an
r-edge-coloring graph where r ≥ 2 in [11].

3 Future Goals

Using computers in mathematical research is getting more and more common, but most of it is done
in “interactive” mode. I believe that a more systematic and methodical approach, with extensive
programming, can lead to even more.

I want to keep working in the kind of research compatible with my strengths. Experimental
mathematics and symbolic computation are the key words. I will try and focus on problems where
there is a way for computers to take part in formulating conjectures, delivering numerical results
for small examples, doing symbolic computation, and whenever possible, proving interesting new
results.

I am willing to work on anything, and like to collaborate also.
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