MATH 373: CLASS 17

1. Exercise

1) Let S(a, b) be the Simpson's rule approximation of $\int_a^b f(x) dx$.

Estimate $\left| \int_0^{\frac{\pi}{4}} x^2 \sin(x) dx - S(0, \frac{\pi}{8}) - S(\frac{\pi}{8}, \frac{\pi}{4}) \right|.$

2) Let T(a,b) be the trapezoidal rule approximation of $\int_a^b f(x) dx$.

Derive the relation between $|T(a,b) - T(a,\frac{a+b}{2}) - T(\frac{a+b}{2},b)|$ and $\left|\int_a^b f(x)dx - T(a,\frac{a+b}{2}) - T(\frac{a+b}{2},b)\right|$.

3) Find c_1, c_2, x_1 and x_2 so that $\int_{-1}^{1} f(x) dx \simeq c_1 f(x_1) + c_2 f(x_2)$ has degree of precision 2 * 2 - 1 = 3.

4) Let $P_n(x)$ be Legendre polynomial of degree n which defined by

 $P_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n}.$

Show $P_n(1) = 1$ and $P_n(-1) = (-1)^n$ for all positive integer n.

(Hint : use definition.)