Elementary Statistics: Solution to Homework 8

Solution

Page 551 Problem 8.17:

False, the central limit theorem only valid when the sample is ≥ 30 or the original data is normally distributed.

Page 551 Problem 8.18:

a) Normal Distribution with $\mu_{\bar{x}} = 69$ and $\sigma_{\bar{x}} = \frac{2.5}{\sqrt{9}} = 0.9129$. b) Normal Distribution with $\mu_{\bar{x}} = 69$ and $\sigma_{\bar{x}} = \frac{2.5}{\sqrt{100}} = 0.5$.

c) The distribution in part b) has smaller standard deviation hence is more accumulated around the center.

Page 553 Problem 8.25:

a) Histogram C

b) Histogram F

Page 553 Problem 8.26:

a) No, the median is not equal to 4. The area under the curve to the left of 4 is less than 0.5.

b) No, because the distribution is skewed to the left.

c) Histogram C because of the central limit theorem.

Page 559 Problem 8.38:

Histogram A by the Central Limit Theorem: the distribution of \overline{X} is normally distributed with the center at 60,000.

Page 559 Problem 8.40:

a) By the empirical rule $2\sigma = 20$. This implies $2\frac{100}{\sqrt{n}} = 20$. Hence n = 100.

b) Similarly n = 400.

c) n = 1600.

d) The bigger the sample size, the better accuracy at estimating a population mean.

Page 580 Problem 9.3:

d) is equal to α , by definition.

Page 580 Problem 9.4:

d) Type II error.

Page 580 Problem 9.5:

To reject H_0 , the *p*-value need to be less than α . Hence the answer is b) *p*-value = 0.005.

Page 580 Problem 9.6:

a) This is a two-sided test since H_1 say the percentage is not equal to 70%.

b) The point estimate is the sample proportion \hat{p} . $\hat{p} = \frac{64}{106} = 0.6038$.

c)
$$\sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.7 \cdot (1-0.7)}{106}} = 0.0445.$$

 $Z = \frac{\hat{p} - p}{\sigma} = \frac{0.6038 - 0.7}{0.0445} = -2.161.$

We use the table to find the *p*-value. The *p*-value = $2 \cdot 0.0154 = 0.0308$, since the test is two-sided.

d) Since the *p*-value is less than α , we reject the null hypothesis.

Page 581 Problem 9.8:

Let p be the unemployment rate for the city.

a) $H_0: p = 0.05$ $H_1: p > 0.05$. **Note**: In this chapter H_0 always proportion p equals some numbers.

b)
$$\hat{p} = \frac{125}{2000} = 0.0625.$$

 $\sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05 \cdot (1-0.05)}{2000}} = 0.00487.$
The test statistic is $Z = \frac{\hat{p} - p}{\sigma} = \frac{0.0625 - 0.05}{0.00487} = 2.5649.$

We use the table to find the p-value.

The *p*-value = 1 - 0.9949 = 0.0051. We use 1 - A because the rejection region is one-sided to the right.

c) Since the *p*-value is less than α .

We reject H_0 and conclude that the unemployment rate in this city is higher than 0.05.

Page 582 Problem 9.12:

Let p be the proportion of all the workers who willing to work fewer hours to obtain more free time.

$$p = 0.2, \ \hat{p} = 0.14 \text{ and } n = 600.$$

 $\sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.2 \cdot (1-0.2)}{600}} = 0.0163.$
The test statistic is $Z = \hat{p} - p = 0.14 - 0.2$

The test statistic is $Z = \frac{p - p}{\sigma} = \frac{0.14 - 0.2}{0.0163} = -3.674.$

There is no value Z = -3.674. But we know the *p*-value is very small.

Again since the *p*-value is less than α . We reject H_0 and conclude that *p* is less than 0.2.