The Kahn–Kalai Conjecture in random graph theory

Thotsaporn Thanatipanonda MUIC Math Seminar

May 24, 2023

1 Expected number of edges in $\mathcal{G}_{n,p}$

Let X be the random variable of number of edges in $G_{n,p}$.

If
$$p = \frac{1}{10}$$
 then $E[X] = \binom{n}{2} \frac{1}{10}$.

On the other hand, find p (as a function of n) such that E[X] = 1.

Answer:
$$p = \frac{2}{n^2}$$
.
If $p \ll \frac{1}{n^2}$ then $E[X] \to 0$, as $n \to \infty$.
If $p \gg \frac{1}{n^2}$ then $E[X] \to \infty$, as $n \to \infty$.

That is the expectation threshold, p_E (number of edges) is $\frac{1}{n^2}$.

2 $\mathcal{G}_{n,p}$ contains a copy of a subgraph H whp for any positive constant p

Assume a fixed subgraph H has k vertices and e edges.

Let X be the random variable of number of copies of H in $\mathcal{G}_{n,p}$.

We want to show $P(X \ge 1) \to 1$ as $n \to \infty$. This is equivalent to show that $P(X = 0) \to 0$ as $n \to \infty$.

Let A_i , $1 \leq i \leq {n \choose k}$ be the event where the chosen k vertices from $\mathcal{G}_{n,p}$ contains no induced subgraph H.

Partition vertices [n] into a disjoint subset $U_1, U_2, \ldots, U_{n/k}$ each of which contains k vertices. Note that $P(A_{U_i})$ are all the same and $P(A_{U_i}) \leq 1 - p^e$.

$$P(X=0) = P(A_1 \cap A_2 \cap \dots \cap A_{\binom{n}{k}}) \le P(A_{U_1} \cap A_{U_2} \cap \dots \cap A_{U_{n/k}}) = P(A_{U_1})^{n/k} \to 0,$$

as $n \to \infty$.

3 Graph Evolution

In a 1960 paper, Erdős and Rényi described the behavior of $\mathcal{G}(n, p)$ very precisely for various values of p. Their results included that:

- If np < 1, then a graph in $\mathcal{G}(n, p)$ will almost surely have no connected components of size larger than $O(\log(n))$.
- If np = 1, then a graph in $\mathcal{G}(n, p)$ will almost surely have a largest component whose size is of order $n^{2/3}$.
- If $np \to c > 1$, where c is a constant, then a graph in $\mathcal{G}(n, p)$ will almost surely have a unique giant component containing a positive fraction of the vertices. No other component will contain more than $O(\log(n))$ vertices.
- If $p < \frac{(1-\varepsilon)\ln n}{n}$, then a graph in $\mathcal{G}(n,p)$ will almost surely contain isolated vertices, and thus be disconnected.
- If $p > \frac{(1+\varepsilon)\ln n}{n}$, then a graph in $\mathcal{G}(n,p)$ will almost surely be connected.

4 Example of Threshold function

Let \mathcal{F} : contain a copy of a triangle. To show $p_c(\mathcal{F}) \asymp \frac{1}{n}$.

Let X be a random variable of number of copies of a triangle in $\mathcal{G}_{n,p}$.

First, we show that, given $p \ll \frac{1}{n}$, $P(X = 0) \to 1$, as $n \to \infty$.

$$E[X] = \binom{n}{3} p^3 \approx \frac{n^3}{6} p^3 \to 0.$$

The second moment method

Second, we show that, given $p \gg \frac{1}{n}$, $P(X \ge 1) \to 1$, as $n \to \infty$.

This is a difficult part as $E[X] \to \infty$ does not imply $P(X \ge 1) \to 1$. E[X] may be large simply because X is very large for just a few values. So X may still be 0 for most of $G \in \mathcal{G}_{n,p}$. We have to resource to the second moment method.

Theorem 1. Let $X_n \ge 0$ be an integer valued random variable. If $E[X_n] > 0$ for n large and $\frac{Var(X_n)}{E[X_n]^2} \to 0$ then $X_n > 0$ whp.

Proof. By Chebyshev's inequality $P(|X - E[X]| \ge E[X]) \le \frac{Var(X)}{E[X]^2}$, from where the result follows.

In this problem,

$$\begin{split} E[X^2] &= \binom{n}{3,3,n-6} p^6 + \binom{n}{1,2,2,n-5} p^6 + \binom{n}{2,1,1,n-4} p^5 + \binom{n}{3,n-3} p^3 \\ &\approx \frac{n^6 p^6}{3!3!} + \frac{n^5 p^6}{2!2!} + \frac{n^4 p^5}{2!} + \frac{n^3 p^3}{3!} \\ &= \frac{n^6 p^6}{3!3!} + \text{ smaller terms }, \quad \text{as } np \gg 1. \end{split}$$

We then see

We then see
$$\frac{Var(X)}{E[X]^2} = \frac{E[X^2] - E[X]^2}{E[X]^2} = \frac{E[X^2]}{E[X]^2} - 1 \to 0,$$

as $E[X] \approx \frac{n^3 p^3}{3!}.$

5 Expected number of isolated vertices in $\mathcal{G}_{n,p}$

Let the random variable

$$X_i = \begin{cases} 1, & \text{if vertex } i \text{ is an isolated vertex} \\ 0, & \text{otherwise.} \end{cases}$$

•

Notice that $P(X_i = 1) = (1 - p)^{n-1}$ and $P(X_i = 0) = 1 - (1 - p)^{n-1}$

Let $X = X_1 + X_2 + \dots + X_n$.

Then $E[X] = E[\sum_{i=1}^{n} X_i] = n \cdot (1-p)^{n-1}.$

With simple calculation, we show that

$$p_E(\text{number of isolated vertices}) \asymp \frac{\ln n}{n}$$
.

References

- [1] Reinhard Diestel Graph Theory, Springer, 3rd edition.
- [2] Jinyoung Park, Huy Tuan Pham, A Proof of the Kahn-Kalai Conjecture, arXiv:2203.17207v2