The Kahn-Kalai Conjecture in random graph theory

Thotsaporn Thanatipanonda
MUIC Math Seminar

May 24, 2023

1 Expected number of edges in $\mathcal{G}_{n, p}$

Let X be the random variable of number of edges in $G_{n, p}$.
If $p=\frac{1}{10}$ then $E[X]=\binom{n}{2} \frac{1}{10}$.
On the other hand, find p (as a function of n) such that $E[X]=1$.
Answer: $p=\frac{2}{n^{2}}$.
If $p \ll \frac{1}{n^{2}}$ then $E[X] \rightarrow 0, \quad$ as $n \rightarrow \infty$.
If $p \gg \frac{1}{n^{2}}$ then $E[X] \rightarrow \infty, \quad$ as $n \rightarrow \infty$.
That is the expectation threshold, p_{E} (number of edges) is $\frac{1}{n^{2}}$.

$2 \mathcal{G}_{n, p}$ contains a copy of a subgraph H whp for any positive constant p

Assume a fixed subgraph H has k vertices and e edges.
Let X be the random variable of number of copies of H in $\mathcal{G}_{n, p}$.
We want to show $P(X \geq 1) \rightarrow 1$ as $n \rightarrow \infty$. This is equivalent to show that $P(X=0) \rightarrow 0$ as $n \rightarrow \infty$.

Let $A_{i}, 1 \leq i \leq\binom{ n}{k}$ be the event where the chosen k vertices from $\mathcal{G}_{n, p}$ contains no induced subgraph H.

Partition vertices $[n]$ into a disjoint subset $U_{1}, U_{2}, \ldots U_{n / k}$ each of which contains k vertices. Note that $P\left(A_{U_{i}}\right)$ are all the same and $P\left(A_{U_{i}}\right) \leq 1-p^{e}$.
$P(X=0)=P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{\binom{n}{k}}\right) \leq P\left(A_{U_{1}} \cap A_{U_{2}} \cap \cdots \cap A_{U_{n / k}}\right)=P\left(A_{U_{1}}\right)^{n / k} \rightarrow 0$, as $n \rightarrow \infty$.

3 Graph Evolution

In a 1960 paper, Erdős and Rényi described the behavior of $\mathcal{G}(n, p)$ very precisely for various values of p. Their results included that:

- If $n p<1$, then a graph in $\mathcal{G}(n, p)$ will almost surely have no connected components of size larger than $O(\log (n))$.
- If $n p=1$, then a graph in $\mathcal{G}(n, p)$ will almost surely have a largest component whose size is of order $n^{2 / 3}$.
- If $n p \rightarrow c>1$, where c is a constant, then a graph in $\mathcal{G}(n, p)$ will almost surely have a unique giant component containing a positive fraction of the vertices. No other component will contain more than $O(\log (n))$ vertices.
- If $p<\frac{(1-\varepsilon) \ln n}{n}$, then a graph in $\mathcal{G}(n, p)$ will almost surely contain isolated vertices, and thus be disconnected.
- If $p>\frac{(1+\varepsilon) \ln n}{n}$, then a graph in $\mathcal{G}(n, p)$ will almost surely be connected.

4 Example of Threshold function

Let \mathcal{F} : contain a copy of a triangle. To show $p_{c}(\mathcal{F}) \asymp \frac{1}{n}$.
Let X be a random variable of number of copies of a triangle in $\mathcal{G}_{n, p}$.
First, we show that, given $p \ll \frac{1}{n}, P(X=0) \rightarrow 1$, as $n \rightarrow \infty$.

$$
E[X]=\binom{n}{3} p^{3} \approx \frac{n^{3}}{6} p^{3} \rightarrow 0
$$

The second moment method

Second, we show that, given $p \gg \frac{1}{n}, P(X \geq 1) \rightarrow 1$, as $n \rightarrow \infty$.
This is a difficult part as $E[X] \rightarrow \infty$ does not imply $P(X \geq 1) \rightarrow 1 . E[X]$ may be large simply because X is very large for just a few values. So X may still be 0 for most of $G \in \mathcal{G}_{n, p}$. We have to resource to the second moment method.

Theorem 1. Let $X_{n} \geq 0$ be an integer valued random variable. If $E\left[X_{n}\right]>0$ for n large and $\frac{\operatorname{Var}\left(X_{n}\right)}{E\left[X_{n}\right]^{2}} \rightarrow 0$ then $X_{n}>0$ whp.

Proof. By Chebyshev's inequality $P(|X-E[X]| \geq E[X]) \leq \frac{\operatorname{Var}(X)}{E[X]^{2}}$, from where the result follows.

In this problem,

$$
\begin{aligned}
E\left[X^{2}\right] & =\binom{n}{3,3, n-6} p^{6}+\binom{n}{1,2,2, n-5} p^{6}+\binom{n}{2,1,1, n-4} p^{5}+\binom{n}{3, n-3} p^{3} \\
& \approx \frac{n^{6} p^{6}}{3!3!}+\frac{n^{5} p^{6}}{2!2!}+\frac{n^{4} p^{5}}{2!}+\frac{n^{3} p^{3}}{3!} \\
& =\frac{n^{6} p^{6}}{3!3!}+\text { smaller terms }, \quad \text { as } n p \gg 1 .
\end{aligned}
$$

We then see

$$
\frac{\operatorname{Var}(X)}{E[X]^{2}}=\frac{E\left[X^{2}\right]-E[X]^{2}}{E[X]^{2}}=\frac{E\left[X^{2}\right]}{E[X]^{2}}-1 \rightarrow 0
$$

as $E[X] \approx \frac{n^{3} p^{3}}{3!}$.

5 Expected number of isolated vertices in $\mathcal{G}_{n, p}$

Let the random variable

$$
X_{i}= \begin{cases}1, & \text { if vertex } i \text { is an isolated vertex } \\ 0, & \text { otherwise }\end{cases}
$$

Notice that $P\left(X_{i}=1\right)=(1-p)^{n-1}$ and $P\left(X_{i}=0\right)=1-(1-p)^{n-1}$
Let $X=X_{1}+X_{2}+\cdots+X_{n}$.
Then $E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=n \cdot(1-p)^{n-1}$.
With simple calculation, we show that

$$
p_{E}(\text { number of isolated vertices }) \asymp \frac{\ln n}{n} \text {. }
$$

References

[1] Reinhard Diestel Graph Theory, Springer, 3rd edition.
[2] Jinyoung Park, Huy Tuan Pham, A Proof of the Kahn-Kalai Conjecture, arXiv:2203.17207v2

