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Level 0. Statement of the Conjecture

The union closed conjecture is a well-known conjecture in combinatorics.

Definition 1 (Union closed set system). A set system F is union closed if for all
A,B ∈ F we have A ∪B ∈ F .

Frankl conjectured that if a family of sets is union-closed, it must have at least one
element (or number) that appears in at least half the sets of F (50% density bound).

Example 1. Consider a union-closed family

F = {{2}, {1, 3}, {2, 4}, {1, 2, 3}, {1, 2, 3, 4}}.

We see that there is an element that appears in at least half the sets of F .
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The 50% density bound was a natural threshold for two reasons.

� First, there are readily available examples of union-closed families in which
all elements appear in exactly 50% of the sets. Like all the different sets you
can make from the numbers 1 to 10, for instance. There are 1,024 such sets,
which form a union-closed family, and each of the 10 elements appears in 512
of them.

� And second, at the time Frankl made the conjecture no one had ever produced
an example of a union-closed family in which the conjecture didn’t hold.

So 50% seemed like the right prediction.
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The result we are presenting by Justin Gilmer (2022) is the first known constant
lower bound

“There exists an i ∈ [n](= {1, 2, . . . , n}) which is contained in 1% of the sets in F”.

The proof makes a clever use of the properties of entropy function and improves

upon the Ω

(
1

log2 |F|

)
bounds of Knill and Wojick.
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0.1 Entropy Functions

Information theory developed in the first half of the 20th century, most famously
with Claude Shannon’s 1948 paper, “A Mathematical Theory of Communication.”
The paper provided a precise way of calculating the amount of information needed
to send a message, based on the amount of uncertainty around what exactly the
message would say. This link between information and uncertainty was Shannon’s
remarkable, fundamental insight.

Definition 2. Let X be a random variable taking values in some range B. Let pb
denote the probability that the value X is b. The binary entropy of X, denoted by
H(X) is just the expected information gain of X:

H(X) :=
∑
b∈B

pb log2 (1/pb).
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Example 2. Let X be Bernoulli random variables with probability p. Then

H(p) := p log2 (1/p) + (1− p) log2 (1/(1− p)).

Figure 1: Graph of H(p)

The maximum of H(p) is 1 at p = 1/2, while the minimum of H(p) is 0 at p = 0, 1.
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Example 3. Given a distribution over subsets of [2] as

p∅ = 0.2, p{1} = 0.1, p{2} = 0.5, p{1,2} = 0.2.

Let A be a sample from this distribution, then

H(A) = 0.2 log2 (1/0.2) + 0.1 log2 (1/0.1) + 0.5 log2 (1/0.5) + 0.2 log2 (1/0.2)

= 1.760964047.

On the other hand, if

p∅ = p{1} = p{2} = p{1,2} = 0.25,

then
H(A) = 4 · 0.25 log2 (1/0.25) = log2 4 = 2.
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Level 1. Outline of Gilmer’s Proof

1.1 Main Theorem

Theorem 1. Let A and B denote independent samples from a distribution over
subsets of [n]. Assume that for all i ∈ [n], P r[i ∈ A] ≤ 0.01. Then H(A ∪ B) ≥
1.26H(A).

Theorem 1 will lead to a contradiction as we will show below. Then we conclude
that there must be an element i ∈ [n], such that Pr[i ∈ A] > 0.01.

� When H(A) > 0, Theorem 1 implies that H(A ∪B) > H(A).

� However if we sample A,B independently and uniformly at random from a
union-closed family F , then H(A ∪B) ≤ H(A).

This follows because A ∪ B is a distribution over F and the entropy of a
distribution over F is maximized when it is the uniform distribution.
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Example 4. Consider n = 4, and a union-closed family
F = {{2}, {1, 3}, {2, 4}, {1, 2, 3}, {1, 2, 3, 4}}. Assign the probability to each element
of F uniformly. Then

H(A) =
1

5
log2 5 + · · ·+ 1

5
log2 5 = log2 5.

Meanwhile, the probability distribution of A ∪ B goes as p{2} = 1/25, p{1,3} =
1/25, p{2,4} = 3/25, p{1,2,3} = 7/25, p{1,2,3,4} = 13/25. Hence

H(A ∪B) =
1

25
log2 25 + · · ·+ 13

25
log2 (25/13) = 1.743372658 . . . < H(A).
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1.2 First property of entropy functions

Property (0): Let F ⊆ B, ∑
b∈F

pb log2 1/pb ≤ log2 |F|.

Moreover if pb =
1

|F|
for all b ∈ F then H(X) = log2 |F|.

Proof. We apply Jensen’s Inequality, basing on the fact that log2 x is concave.

∑
b∈F

pb log2 1/pb ≤ log2

(∑
b∈F

pb · 1/pb

)
= log2 |F|.
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1.3 Result!

We then obtain as an immediate corollary from Theorem 1.

Theorem 2. Let F ⊆ 2[n] be a union-closed family, F ≠ {∅}. Then there exists
i ∈ [n] that is contained in at least 1% of the sets in F .

11



Level 2. Proof of Theorem 1

2.1 More Examples

We could consider when A is a n-binary bits string. We use A as a short hand to
represent the element in F . For example (0, 0) → ∅, (1, 0) → {1}, (0, 1) → {2} and
(1, 1) → {1, 2}.

Example 5. Let A = (A1, A2) be a random subset of [2] such that each Ai are iid
Bernoulli random variables with probability p. Then

H(A) = p2 log2
1

p2
+ 2p(1− p) log2

1

p(1− p)
+ (1− p)2 log2

1

(1− p)2

= 2p2 log2
1

p
+ 2p(1− p)

[
log2

1

p
+ log2

1

1− p

]
+ 2(1− p)2 log2

1

(1− p)

= 2p log2
1

p
+ 2(1− p) log2

1

(1− p)
= 2H(p).
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In general if A = (A1, A2, . . . , An) is a random subset of [n] such that each Ai are
iid Bernoulli random variables with probability p. Then H(A) = nH(p).

We remark that we could not apply the linearity of expectation H(A) = H(A1) +
H(A2) + · · ·+H(An) for the entropy function, why?

The direct calculation of H(A) is given below:

H(A) =
n∑

k=0

(
n

k

)
pk(1− p)n−k

[
log2

1

pk
+ log2

1

(1− p)n−k

]
=

n∑
k=0

k

(
n

k

)
pk(1− p)n−k log2

1

p
+

n∑
k=0

(n− k)

(
n

k

)
pk(1− p)n−k log2

1

1− p

=

(
n log2

1

p

) n∑
k=0

(
n− 1

k − 1

)
pk(1− p)n−k +

(
n log2

1

1− p

) n∑
k=0

(
n− 1

k

)
pk(1− p)n−k

= np log2
1

p
+ n(1− p) log2

1

1− p
= nH(p).
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The followings are the motivational examples to the proof of union-closed sets con-
jecture.

Example 6. Let A and B be two independent samples from the same Bernoulli
distribution, i.e. A = [n] with probability p and A = ∅ with probability 1− p. Then
H(A) = H(p) and H(A ∪B) = H(2p− p2).

In terms of of binary digits, we use A ∪B to denote max(A,B). Also

Pr(A∪B = [n]) = Pr(A = [n] or B = [n]) = p2+2p(1−p) = p(p+2−2p) = p(2−p).
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Figure 2: Graph of H(p) and H(2p− p2)

Note that H(p) and H(2p − p2) intersect at p =
3−

√
5

2
≈ 0.38196601125010 . . . .

That is H(A ∪B) > H(A) if p < 0.38196601125010.
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Example 7. Let A = (A1, A2, . . . , An) be a random subset of [n] such that each Ai

are iid Bernoulli random variables with probability p. Then H(A) = nH(p) and
H(A ∪B) = nH(2p− p2).

Remark 1: In the last example, we notice that

H(A ∪B) > H(A) if p = Pr[Ai = 1] <
3−

√
5

2
= 0.38196601125010.

Hence it might be possible that 1% density bound could be improved to 38.1966%,
but no more.
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2.2 More Definitions and Properties of entropy Functions

Here is a good point to mention about some useful definitions and properties of the
entropy functions H that involves in the proof.

Definition 3. If E is some event, the conditional entropy of X given E is naturally
defined by

H(X|E) =
∑
b∈F

Pr(X = b |E) log2 (1/Pr(X = b |E)).

Definition 4. If Y is another random variable taking values in some range A, the
conditional entropy of X given Y is defined by

H(X|Y ) =
∑
a∈A

H(X |Y = a) · Pr(Y = a).
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We could think of H(X |Y ) as a weighted average of H(X |Y = a) over all the
possible values of Y . The following properties of H(X |Y ) are given without proof.
The reader can prove it (by applying definitions) as an exercise.

1. H(X |X) = 0.

2. H(X |Y ) = 0 if and only if X = f(Y ) for some function f .

3. H(X |Y ) = H(X) if and only if X and Y are independent.
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The list of the main properties that we are going to use is given below:

1. H(X, Y ) = H(Y ) +H(X |Y )

2. H(X1, X2, . . . , Xn) ≤ H(X1)+H(X2)+· · ·+H(Xn) with equality only holding
when X1, X2, . . . , Xn are mutually independent.

3. Chain Rule for Entropy: For a sequence of random variables X1, . . . , Xn,
denote X<i = (X1, . . . , Xi−1). Then

H(X1, . . . , Xn) =
∑
i

H(Xi|X<i)

= H(X1) +H(X2 |X1) +H(X3 |X1, X2) + . . . .

4. For random variables X and Y and a function f(Y ),

H(X|Y ) ≤ H(X|f(Y )).

Note that we have seen property (2) holds with equality in Examples 5 and 7 earlier.
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Proof. 1. Recall that

H(X, Y ) =
∑
a∈A

∑
b∈B

Pr(X = b, Y = a) · log2
1

Pr(X = b, Y = a)
.

and

H(X |Y ) =
∑
a∈A

∑
b∈B

Pr(X = b |Y = a) · log2
1

Pr(X = b |Y = a)
· Pr(Y = a)

=
∑
a∈A

∑
b∈B

Pr(X = b, Y = a) · log2
P (Y = a)

Pr(X = b, Y = a)
.

Therefore,

H(X, Y )−H(X |Y ) =
∑
a∈A

∑
b∈B

Pr(X = b, Y = a) · log2
1

P (Y = a)

=
∑
a∈A

Pr(Y = a) · log2
1

P (Y = a)
= H(Y ).

20



2. We show only H(X, Y ) ≤ H(X) +H(Y ). The rest will follow from induction.

H(X) +H(Y ) =
∑
b∈B

Pr(X = b) · log2
1

P (X = b)
+
∑
a∈A

Pr(Y = a) · log2
1

P (Y = a)

=
∑
a∈A

∑
b∈B

Pr(X = b, Y = a) · log2
1

P (X = b)

+
∑
a∈A

∑
b∈B

Pr(X = b, Y = a) · log2
1

P (Y = a)

=
∑
a∈A

∑
b∈B

Pr(X = b, Y = a) · log2
1

P (X = b)P (Y = a)
.

Hence, if X and Y are independent then

H(X)+H(Y ) =
∑
a∈A

∑
b∈B

Pr(X = b, Y = a)·log2
1

P (X = b, Y = a)
= H(X, Y ).

Otherwise, as∑
a∈A

∑
b∈B

P (X = b)P (Y = a) =
∑
a∈A

∑
b∈B

P (X = b, Y = a),
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by Gibbs’ inequality(below), we conclude that H(X) +H(Y ) ≥ H(X, Y ).

Gibbs’ inequality:
Let s1, s2, . . . , sn and t1, t2, . . . , tn be positive real numbers such that

∑
i si ≤∑

i ti. Then
n∑

i=1

ti log2 ti ≥
n∑

i=1

ti log2 si.

3. By property (1),

H(X1, . . . , Xn) = H(Xn |X1, . . . , Xn−1) +H(X1, . . . , Xn−1).

Then apply property (1) recursively to get the claim.

4. The sequence X → Y → f(Y ) forms a Markov chain. Thus by the data
processing inequality:

I(X : f(Y )) ≤ I(X : Y )

H(X)−H(X | f(Y )) ≤ H(X)−H(X |Y )

H(X |Y ) ≤ H(X | f(Y )).
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2.3. Lemma and Proof of Theorem 1

Theorem 1 Let A and B denote independent samples from a distribution over
subsets of [n]. Assume that for all i ∈ [n], P r[i ∈ A] ≤ 0.01. Then H(A ∪ B) ≥
1.26H(A).

Proof of Theorem 1: The proof strategy relies on revealing the bits of A∪B and
A one at a time. For each step, we apply property (4) of entropy function:

H((A ∪B)i | (A ∪B)<i) ≥ H((A ∪B)i |A<i, B<i).

Then by the Main Lemma (below), we have

H((A ∪B)i |A<i, B<i) ≥ 1.26H(Ai |A<i).

We then conclude that, for each i = 1, . . . , n,

H((A ∪B)i | (A ∪B)<i) ≥ 1.26H(Ai |A<i).

Sum over i and apply the chain rule, property (3), to conclude that H(A ∪ B) ≥
1.26H(A).
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We will prove the main lemma in Level 3.

Lemma 3 (Main Lemma). Let C denote a random variable over a finite set S.
For each c ∈ S, let pc be a real number in [0, 1]. Let X be a Bernoulli random
variable sampled according to the following process: first sample c ∈ C, then sample
X with Pr[X = 1 |C = c] = pc. Assume further that E[X] ≤ 0.01. Let C ′ be an
iid copy of C, and sample X ′ conditioned on C ′ according to the same process (so
Pr[X ′ = 1 |C ′ = c] = pc, and X ′ is independent of X and C). Then

H(X ∪X ′ |C,C ′) ≥ 1.26H(X |C).

Here, X,X ′ correspond to the random bits Ai, Bi respectively, and C,C ′ correspond
to the histories A<i, B<i.
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Level 3. Proof of the Main Lemma

We can forget all of the structure contained in the random variables A<i and B<i.
Lemma 3 only assumes that they are iid over some finite set S.

We note that Lemma 3 can be restated a bit more succinctly that assuming {pc}c∈S ∈
[0, 1] is a finite sequence of real numbers satisfying Ec[pc] ≤ 0.01, then

Ec,c′[H(pc + pc′ − pcpc′)] ≥ 1.26Ec[H(pc)].

We note that this notation makes sense i.e. (Recall that X is a Bernoulli r.v.)

E[X] = P (X = 1) =
∑
c

P (X = 1|C = c) · P (C = c) =
∑
c

pc · P (C = c) = Ec[pc].

Similarly,

H(X |C) =
∑
c

H(X|C = c) · P (C = c) =
∑
c

H(pc) · P (C = c) = Ec[H(pc)].
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3.1 Motivating Example

Example 8. Sample A ⊆ [n] in the following manner. First sample A1 from
a Bernoulli distribution with probability p. Then, conditioned on the event that
A1 = 1, sample each Ai from iid Bernoulli distributions with probability q = 0.99.
Otherwise, if A1 = 0 then each Ai = 0. To calculate H(A), we apply the chain rule
to get H(A) = H(A1, A>1) = H(A1) +H(A>1 |A1). The conditional entropy can be
computed as

H(A>1 |A1) = Pr[A1 = 0] · 0 + Pr[A1 = 1] ·H(q)(n− 1).

Thus H(A) = H(p) + pH(q)(n− 1). Via a similar calculation we get H(A ∪ B) =
H(2p− p2) + 2p(1− p)H(q)(n− 1) + p2H(2q − q2)(n− 1).
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Note from Example 8:

In this example, for n large and p small, H(A ∪ B) is dominated by the term
2p(1 − p)H(q)(n − 1). This corresponds to the event that exactly one of A1, B1 is

equal to 1. It follows that
H(A ∪B)

H(A)
≈ 2(1 − p). Note in this case, the entropy

H(A∪B |A1 = B1 = 1) is small relative to H(A |A1 = 1), i.e. H(A∪B |A1 = B1 =
1) = H(q(2 − q))(n − 1) and H(A |A1 = 1) = H(q)(n − 1), where H(q(2 − q)) =
0.001473033527 and H(q) = 0.08079313575.
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3.2 Proof Sketch

We let C0 = {c | pc ≤ 0.1} and let C1 = Cc
0.

Using the assumption that E[X] ≤ 0.01. we apply Markov’s inequality to get that

Pr[c ∈ C1] = Pr[pc > 0.1] ≤ Ec[pc]

0.1
≤ 0.1.

This implies that Pr[c ∈ C0] ≥ 0.9.

Details

We want to show that

H(X ∪X ′ |C,C ′) ≥ 1.26H(X |C),

under the assumptions that E[X] and E[X ′] ≤ 0.01.
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We write H(X ∪X ′ |C,C ′) and H(X |C) as a sum of disjoint events:

H(X |C) = H(X |C ∈ C0) · Pr(C ∈ C0) +H(X |C ∈ C1) · Pr(C ∈ C1).

and

H(X ∪X ′ |C,C ′) = H(X ∪X ′ |C,C ′ ∈ C0) · Pr(C,C ′ ∈ C0)
+ 2H(X ∪X ′ |C ∈ C0, C ′ ∈ C1) · Pr(C ∈ C0, C ′ ∈ C1)
+H(X ∪X ′ |C,C ′ ∈ C1) · Pr(C,C ′ ∈ C1).

We will show that

(1) H(X ∪X ′ |C,C ′ ∈ C0) · Pr(C,C ′ ∈ C0) ≥ 1.26H(X |C ∈ C0) · Pr(C ∈ C0)

(2) 2H(X ∪X ′ |C ∈ C0, C ′ ∈ C1) ≥ 1.62H(X |C ∈ C1) · Pr(C ∈ C1)

(3) H(X ∪X ′ |C,C ′ ∈ C1) · Pr(C,C ′ ∈ C1) ≥ 0.

Adding up these three events, we get the claimed statement of Lemma 3. Event (3)
is trivial. Event (1) and (2) are based on the Lemmas below.
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Given that both C,C ′ ∈ C0, the entropy H(X ∪X ′) will be a constant factor larger

than
H(X) +H(X ′)

2
.

Lemma 4. Assume p, p′ ≤ 0.1. Then H(p+ p′ − pp′) ≥ 1.4

(
H(p) +H(p′)

2

)
.

The plot from Maple is kind of verify this statement numerically.

In the event that exactly one of c, c′ ∈ C0 we can show that H(X ∪X ′) ≥ 0.9H(X).

Lemma 5. For any p, p′ ∈ [0, 1], H(p+ p′ − pp′) ≥ (1− p)H(p′).

Proof. We apply the Jensen’s inequality from the concavity of H.

H(p · 1 + (1− p)p′) ≥ pH(1) + (1− p)H(p′) = (1− p)H(p′).
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