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Abstract

In this work, we introduce a new framework for analyzing a no-feedback, k-shuffled
card guessing game. We show that the random variable representing the number on
the i-th card follows a mixture distribution, allowing us to decompose its probability
mass function into simpler, more manageable components. Building on this, we derive a
closed-form expression for the probability generating function of each component, which
is represented as a product of polynomials with a well-defined structure.
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1 Preliminaries

Over the past few decades, the Card Guessing Game has been the subject of numerous
studies, focusing on aspects such as optimal strategies, worst-case scenarios, and the distri-
bution of correct guesses. One well-known feature of the game is the use of “riffle shuffles,”
commonly seen in casinos and poker games, where the deck is shuffled multiple times to achieve
randomness. The famous result of Bayer and Diaconis [1] demonstrated that after just seven
riffle shuffles, the positions of all 52 cards are nearly equally likely to be randomized.

The game comes in several variants, with or without feedback from the dealer. In the complete
feedback version, similar to blackjack, the dealer reveals each card after a guess, allowing the
player to adjust their strategy. In the no-feedback version, the focus of this work, the player
must guess all the cards in advance, with the option to repeat guesses across different positions
to maximize the probability of a correct guess.
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In summary, the game considered in this work proceeds as follows:

Objective:
Earn as many points as possible by correctly guessing the numbers on the cards.

Rule:
- The game begins with a deck of n cards, initially ordered as 1, 2, 3, . . . , n.
- The dealer performs k-time riffle shuffles on the deck.

- The player then makes a series of guesses for the number on each card.

- No feedback is given after each guess.

- The game continues until the entire deck has been guessed.

Related work and our contribution

In 1998, Ciucu [2] published “No-feedback card guessing for dovetail shuffles,” presenting the
optimal guessing strategy for n cards (n even) after k riffle shuffles, when k > 2 log2(n). The
analysis was based on the eigenvalues and eigenvectors of the transition matrix. Using the
optimal strategy derived therein, the moments (and all higher moments) of the one-shuffle
no-feedback card guessing game were established in [3].

In contrast, this work introduces a novel generating function framework for the no-feedback
card guessing game, applicable to any number of cards n and any number of shuffles k. Our
contributions are as follows:

• For any values of n and k, we show that the probability mass function (p.m.f.) of the
random variable Ji, representing the card number at the i-th position in the deck, can be
decomposed into more tractable p.m.f. components (Propositions 1 and 2).

• Building on this, we derive a simple closed-form expression for the probability generating
function (p.g.f.) of each component in the mixture model, which can be interpreted as the
product of polynomials that exhibit a clear and systematic pattern (Theorem 3). Finally,
we provide the explicit formula for the p.g.f. of the random variable Ji in Corollary 5.

Example of a single riffle shuffle (k = 1)

Consider a single riffle shuffle with a deck of n cards. Split the deck into two piles (which may
have zero cards in one pile), and interleave the cards in any possible way. Can you determine
all the possible permutations generated?

For instance, when n = 1, {1} is the only possible permutation, but with multiplicity 2,
generated from the piles ({1}, {}) or ({}, {1}). In general, there are 2n possibilities, among
which n+ 1 are the identity permutation (having one increasing subsequence), and the others
are of two increasing subsequences (with multiplicity 1). We give a few examples in Figure 1.
For each card position, the color indicates the most likely number to show up in that position.

2



Figure 1: Examples of all possible permutations after 1-time riffle shuffling for n = 1, 2, 3, 4.
For each card position, the color indicates the most likely number.

Frequency and probability matrices

We record the frequency of card j in position i in the frequency matrix M = (mi,j). Row i
represents the frequency at position i of the deck, and column j corresponds to card j. For
example, m1,3 gives the frequency of card 3 at the top position.

When n = 4, the frequency matrix is given by

M =


9 3 3 1

4 6 4 2

2 4 6 4

1 3 3 9

 .

Probability matrix for k = 1 shuffle, P (1)

For a fixed n, we define a probability matrix for k = 1 shuffle, P (1) := M/2n. Let a(i, j, n) :=
mi,j

2n
be the (i, j) element of P (1). Then, a(i, j, n) represents the probability of a card in position

i being number j. It turns out that a(i, j, n) has an exact formula:

a(i, j, n) =
1

2i

(
i− 1

j − 1

)
+

1

2n−i+1

(
n− i

j − i

)
. (1)

This formula was mentioned and proved earlier in [2]. We notice that the first term is non-zero
when i ≥ j and the second term is non-zero when j ≥ i. The row sum and column sum are
both equal to 1, i.e. P (1) is a doubly stochastic matrix. This is easy to show in one direction,
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but not so easy to show in the other direction:

n∑
j=1

a(i, j, n) =
1

2i

i∑
j=1

(
i− 1

j − 1

)
+

1

2n−i+1

n∑
j=i

(
n− i

j − i

)
=

1

2
+

1

2
= 1,

and
n∑

i=1

a(i, j, n) =
n∑

i=j

1

2i

(
i− 1

j − 1

)
+

j∑
i=1

1

2n−i+1

(
n− i

j − i

)
= 1.

Also, the symmetric property is easily observed through the matrix P (1):

a(i, j, n) = a(n+ 1− i, n+ 1− j, n). (2)

Probability matrix for general k shuffles, P (k)

Analogous to a(i, j, n) for the case k = 1, we let a
(k)
i,j denote the probability that the card

number j will show up at position i after giving the deck k riffle shuffles (where we now make

i, j subscripts, and suppress n from a
(k)
i,j for simplicity). The probability matrix P (k) for k

shuffles is subsequently defined by
(
P (k)

)
i,j

= a
(k)
i,j .

As mentioned in [2], since the transpose matrix
(
P (1)

)T
is a probability transition matrix, it

follows that P (k) =
(
P (1)

)k
, the k-th power of the matrix, and so

a
(k)
i,j =

n∑
s1=1

a
(1)
i,s1

a
(k−1)
s1,j

= · · · =
n∑

s1=1

· · ·
n∑

sk−1=1

a
(1)
i,s1

a(1)s1,s2
. . . a

(1)
sk−1,j

. (3)

2 Main results

We let i ∈ {1, . . . , n} be fixed and focus exclusively on the i-th row of the matrix P (k). For
this purpose, we define a random variable Ji representing the card number on the i-th position,
whose p.m.f. is given by

P (Ji = j) = a
(k)
i,j , j = 1, . . . , n.

The left plot of Figure 2 illustrates the p.m.f. of J60 (for j = 1, . . . , n) when k = 3 and n = 500.

The plot suggested a structure that led us to hypothesize that a
(k)
i,j is decomposable, implying

Ji follows a mixture distribution. This insight motivated our approach, which we now describe.
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Figure 2: Example with k = 3, n = 500, i = 60: (a) the p.m.f. of the J60 :
(
a
(3)
60,j, j = 1, . . . , n

)
;

(b) the decomposed components pL’s of the mixture model J60.

The expression for a
(k)
i,j is decomposable

We start by decomposing a
(1)
i,j (k = 1):

a
(1)
i,j =

1

2
[b

(1)
i,j + b

(2)
i,j ], (4)

where

b
(1)
i,j :=

1

2i−1

(
i− 1

j − 1

)
, b

(2)
i,j :=

1

2n−i

(
n− i

j − i

)
. (5)

In general, for k ≥ 1, a
(k)
i,j can be decomposed into the sum of 2k products of a sequence of b

(1)
i,j

and b
(2)
i,j , as stated in the following proposition.

Proposition 1 (Decomposition of the structure of the p.m.f. of Ji). The expression for a
(k)
i,j in

(3) can be decomposed as follows:

a
(k)
i,j =

1

2k

∑
L

pL(j), (6)

where L is a list index of length k, with entries that are either 1 or 2. Specifically, pL(j) is
given by

pL(j) :=
n∑

s1=1

· · ·
n∑

sk−1=1

b
(L[1])
i,s1

b(L[2])s1,s2
. . . b

(L[k])
sk−1,j

, (7)

where L[l] refers to the l-th element of the list L, and each term b
(L[l])
i,j is defined as b

(1)
i,j or b

(2)
i,j

in (5), depending on whether L[l] is equal to 1 or 2.

Proof. Straightforward from the decomposed structure (4) for a
(1)
i,j , and the relation (3) for a

(k)
i,j .
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For a fixed value of k, there are a total of 2k such list indices, which represent all possible ways
to define a list L.

For example, for k = 2,

a
(2)
i,j =

1

4

[
p[1,1](j) + p[2,1](j) + p[1,2](j) + p[2,2](j)

]
,

where

p[1,1](j) =
n∑

s=1

b
(1)
i,s b

(1)
s,j =

n∑
s=1

1

2i−1

(
i− 1

s− 1

)
1

2s−1

(
s− 1

j − 1

)
,

p[2,1](j) =
n∑

s=1

b
(2)
i,s b

(1)
s,j =

n∑
s=1

1

2n−i

(
n− i

s− i

)
1

2s−1

(
s− 1

j − 1

)
,

p[1,2](j) =
n∑

s=1

b
(1)
i,s b

(2)
s,j =

n∑
s=1

1

2i−1

(
i− 1

s− 1

)
1

2n−s

(
n− s

j − s

)
,

p[2,2](j) =
n∑

s=1

b
(2)
i,s b

(2)
s,j =

n∑
s=1

1

2n−i

(
n− i

s− i

)
1

2n−s

(
n− s

j − s

)
.

Another example for k = 3, L = [1, 1, 2] leads to

pL(j) =
n∑

s1=1

n∑
s2=1

b
(1)
i,s1

b(1)s1,s2
b
(2)
s2,j

=
n∑

s1=1

n∑
s2=1

1

2i−1

(
i− 1

s1 − 1

)
1

2s1−1

(
s1 − 1

s2 − 1

)
1

2n−s2

(
n− s2
j − s2

)
.

The right plot in Figure 2 shows the eight components of the decomposed p.m.f. of J60 for k = 3
and n = 500.

Generating function for each decomposed term pL

Let us fix the list index L (one of the 2k possible indices) and consider the decomposed term
pL. The expression for pL in (7) initially involves a (k− 1)-nested binomial sum, which cannot
be simplified directly. The key idea of our approach is to find the generating function for pL,
which leads to a k-nested sum that can be simplified.

In particular, we define the probability generating function of pL as

FL(x) =
n∑

j=1

pL(j) · xj

=
n∑

j=1

n∑
s1=1

· · ·
n∑

sk−1=1

b
(L[1])
i,s1

b(L[2])s1,s2
. . . b

(L[k])
sk−1,j

· xj. (8)

Proposition 2. The function FL(x) is a valid probability generating function. This condition
guarantees that each pL in (6) forms a valid probability mass function, and hence, Ji indeed
follows a mixture distribution.
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Proof. This follows directly from the fact that FL(1) = 1 and that pL(j) is clearly non-negative.

As an overview, after reordering the summation (8) (moving the sum over j to the innermost
position) and evaluating from the inside out (starting with the sum over j and then over
sk−1, . . . , s1), we obtain a simple and tractable generating function for (8) for all k ≥ 1. We
now present this result.

Let us look at some examples of FL(x):

• for k = 0,
F[ ](x) = xi.

This is a trivial case. When cards are not shuffled, the probability that the card in position
i is i is 1.

• for k = 1,

F[1](x) = (0x+ 1)n−i

(
x

2
+

1

2

)i−1

x, F[2](x) =

(
x

2
+

1

2

)n−i

(x+ 0)i−1 x.

• for k = 2,

F[1,1](x) = (0x+ 1)n−i

(
x

4
+

3

4

)i−1

x, F[2,1](x) =

(
x

4
+

3

4

)n−i (
x

2
+

1

2

)i−1

x,

F[1,2](x) =

(
x

2
+

1

2

)n−i(
3x

4
+

1

4

)i−1

x, F[2,2](x) =

(
3x

4
+

1

4

)n−i

(x+ 0)i−1 x.

FL(x) has a nice simple pattern!

It is utterly important that FL(x) has a simple pattern from which the underlying structure of
the problem can be uncovered. To keep track of the pattern, we define a functional notation:

g(a, b) = [ax+ (1− a)]n−i · [bx+ (1− b)]i−1 · x. (9)

With this notation, the function FL(x) for k = 0, 1 can be expressed as

• for k = 0,
F[ ](x) = g(0, 1).

• for k = 1,

F[1](x) = g

(
0,

1

2

)
, F[2](x) = g

(
1

2
, 1

)
.
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Figure 3: A bisection tree structure. Each node of depth k represents FLt(x) for t =
0, 1, . . . , 2k − 1.

The order of the list indices Lt

For general k ≥ 1, a bisection tree in Figure 3 illustrates the connections between the expressions
FLt(x) for k- and (k + 1)-shuffles. At each subtree, the parent’s argument (a, b) for g(·, ·) is
bisected into left (a, a+b

2
) and right (a+b

2
, b) child nodes. The parent’s index Lt is expanded

by adding 1 or 2 to form the child indices [1, Lt] and [2, Lt]. This mapping links each index t
to a unique list index Lt, defining a relationship between the generating functions for k- and
(k + 1)-shuffles. This relationship underpins the induction proof for Theorem 3 and leads to
the closed-form expression for FLt(x).

Theorem 3 (Generating function FLt). For any given k ≥ 1, and the list indices L0, L1, . . . , L2k−1,
labelled according to the generalization pattern shown in Figure 3, we have

FLt(x) = g

(
t

2k
,
t+ 1

2k

)
, for t = 0, 1, . . . , 2k − 1,

where g(a, b) = [ax+ (1− a)]n−i · [bx+ (1− b)]i−1 · x for a, b ∈ [0, 1].

From this point onward, let us fix t ∈ {0, 1, . . . , 2k − 1}, and write L := Lt for simplicity. We
use the following lemma to find the sum of the terms in FL(x) recursively.

Lemma 4. Assume f(i) = An−iBi−1x where A = ax+ (1− a) and B = bx+ (1− b). Then,

T1(f) :=
i∑

s=1

1

2i−1

(
i− 1

s− 1

)
f(s) = An−i

(
A+B

2

)i−1

x;

T2(f) :=
n∑

s=i

1

2n−i

(
n− i

s− i

)
f(s) =

(
A+B

2

)n−i

Bi−1x.
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Proof. First, by the binomial theorem, it is easy to show that

i∑
s=1

1

2i−1

(
i− 1

s− 1

)
xs−1 =

(
x

2
+

1

2

)i−1

and
n∑

s=i

1

2n−i

(
n− i

s− i

)
xs−1 =

(
x

2
+

1

2

)n−i

· (x+ 0)i−1 .

For the general case,

i∑
s=1

1

2i−1

(
i− 1

s− 1

)
f(s) =

i∑
s=1

1

2i−1

(
i− 1

s− 1

)
An−1

(
B

A

)s−1

x

= An−1x

(
A+B

2A

)i−1

, from the above identity

= An−i

(
A+B

2

)i−1

x.

This proves the first claim regarding T1(f). The second claim can be done similarly.

We now return to the proof of Theorem 3.

Proof of Theorem 3. We prove by induction on k = |L|. For the base case, we verify that
F[ ](x) = xi, is indeed g(0, 1). For the induction step, let L′ = [lk−1, .., l2, l1] and L =

[lk, lk−1, ..., l2, l1] = [lk, L
′]. Assume f := FL′(x) = g

(
t

2k−1
,
t+ 1

2k−1

)
. Then it follows from

Lemma 4 that FL(x) = T1(f) = g

(
2t

2k
,
2t+ 1

2k

)
if lk = 1 and FL(x) = T2(f) = g

(
2t+ 1

2k
,
2(t+ 1)

2k

)
if lk = 2.

Open Problem 1: Find a combinatorial interpretation for the generating function FL(x) of
this card guessing problem.

Corollary 5. For fixed i, n, and k, let Ji be a random variable representing the card number
in the i-th position of an n-card deck after k shuffles. Define its probability generating function
as

Gi(x) =
n∑

j=1

P (Ji = j)xj.

Then, the p.g.f. of Ji is the sum of the product of polynomials given by

Gi(x) =
1

2k

2k−1∑
t=0

(
t

2k
x+ 1− t

2k

)n−i (
t+ 1

2k
x+ 1− t+ 1

2k

)i−1

x. (10)
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Proof.

Gi(x) =
n∑

j=1

a
(k)
i,j x

j =
1

2k

2k−1∑
t=0

n∑
j=1

pLt(j)x
j =

1

2k

2k−1∑
t=0

FLt(x).

The second equality follows from (6), and the result is a consequence of Theorem 3.

Observations and applications

• For fixed i, n, and k, the p.g.f. Gi(x) of Ji in (10) simplifies the p.m.f. calculation P (Ji =

j) = a
(k)
i,j , reducing the summands in (3) from k − 1 to a single term over t.

• For a fixed card position i, the optimal strategy is to select j∗i that maximizes the prob-
ability P (Ji = j). For example, in Figure 2 with n = 500 and k = 3, the maximizer j∗60
corresponds to the mode of the p.m.f., or the degree j∗ of xj in the p.g.f. G60(x) with the
largest coefficient. Here, j∗60 = 8, meaning we should guess “8” for the 60th card.

• Formula (10) also shows that, when k is fixed, Gi(x) is a mixture model with 2k com-
ponents, each being the product of simple polynomials. This simple structure has the
potential to analyze cases where k is fixed and n → ∞, opening the door for future
studies on asymptotic behavior of optimal strategies.
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