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Abstract

As a former engineering student, I have a great interest in a real world ap-
plication of mathematics. Probability is something I can relate to. I am lucky
enough that after I switched to Mathematics, this is one of many interests of
my Ph.D. advisor, Doron Zeilberger, as well. In this article we create a pro-
gram to apply the overlapping stage approach to calculate the moments E[Xr]
and E[(X−µ)r] of combinatorial objects. We also show the normality property
of their distributions when these moments are easy enough to calculate.

The programs accompanied this article are SchurT.txt, InvMaj.txt, Boolean.txt
which can be found from the author’s website: thotsaporn.com.

1 Introduction

The expectation functional, E[X] is a powerful tool to study combinatorial objects,
and often gives us quite useful information. For example, the common technique in
probabilistic method to show the existence of the objects is to show E[X] < 1, i.e.

E[X] < 1 implies Pr(X = 0) > 0.

For the higher moments, E[Xr], the computation gets complicated fast and we need
computers to do symbolic computation. The main technique to deal with the higher
moment is called the overlapping stage approach and has already been demonstrated
in [7], [8]. We briefly describe this approach below.

Calculation of Moments
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It is easy to see that E[X0] = 1. The computation for E[X] is somewhat harder.
The other higher moments than that are very hard to do without a computer.

Write
X =

∑
S

XS,

where the sum is over all the objects of interest S over some domain, and XS is the
indicator random variable that is 1 if the object S satisfies the assigned property and
0 otherwise.

We also have

Xr =
n∑

i1=1

n∑
i2=1

...

n∑
ir=1

Xi1Xi2 ...Xir ,

and by linearity of expectation and symmetry, we further have

E[Xr] =
n∑

i1=1

n∑
i2=1

...
n∑

ir=1

E[Xi1Xi2 ...Xir ],

The difficulty of calculating the higher moment lies in how these random objects
intersect with each other.

There are some former works of Doron Zeilberger as in [6, 7, 8, 9, 2, 1] that we can
study. For brute force calculation referred to [6]. For overlapping stage approach
referred to [7, 8]. For asymptotically normal on different statistics of permutations
refer to [2, 1]. This work can be viewed as a continuation of [7, 8].

Apart from the mathematical contents we are presenting, the goals (in a bigger
picture) of this article are to

1. Serve as an introductory reading for an interested reader.

2. Give examples of combinatorial objects that the moments can be computed
from. We consider Schur triples, inversion and major index, Boolean boards
and Boolean functions.

3. Demonstrate an application of symbolic computation which, in this case, was
done by Maple program.

2



2 Monochromatic Schur Triples on [1, n]

Monochromatic Schur Triples on [1, n] is a topic in Ramsey theory. We let U be set
of all c-integer-colorings of [1, n], and X := X(u) be the number of monochromatic
Schur triples S := {x, y, x+y} of [1, n] in u ∈ U . We calculate E[Xr], the rth moment
of X.

The first moment:

A triple S can be written as S = S1 ∪ S2 where S1 are triples of the form {x, x, 2x}
and S2 are triples of the form {x, y, x+ y}, x 6= y.

E[XS1 ] = c · 1

c2
=

1

c
,

E[XS2 ] = c · 1

c3
=

1

c2
.

Already there are two formulas for E[X] depending on whether the length of the
interval, n, is odd or even.

Case 1: n is odd

E[X] =
∑
S

E[XS]

=
∑
S1

E[XS1 ] +
∑
S2

E[XS2 ]

=
1

c

(
n− 1

2

)
+

1

c2
((n− 2) + (n− 4) + (n− 6) + ...+ 1)

=
1

c

(
n− 1

2

)
+

1

c2

(
n− 1

2

)2

=
(n− 1)(n− 1 + 2c)

4c2
.

Case 2: n is even

E[X] =
∑
S1

E[XS1 ] +
∑
S2

E[XS2 ]

=
1

c

(n
2

)
+

1

c2
((n− 2) + (n− 4) + (n− 6) + ...+ 0)

=
1

c

(n
2

)
+

1

c2

(n
2

)(n
2
− 1
)

=
n(n− 2 + 2c)

4c2
.

The second moment:
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The calculation for the second moment is considerably harder. We consider 2-tuples
[S1, S2] of triples {x, y, x+ y} of [1, n].

E[X2] = E

[∑
S1

XS1 ·
∑
S2

XS2

]
=
∑

[S1,S2]

E[XS1XS2 ].

The sum depends on how S1 and S2 interact with each other. For each configuration
of S1 ∪ S2, 2 ≤ |S1 ∪ S2| ≤ 6. For example, |S1 ∪ S2| = 6 when |S1| = |S2| = 3 and
the two triples do not intersect.

Let K := S1 ∪ S2 represent each of the isomorphic configurations. While the first
moment has only 2 isomorphic configurations {x, x, 2x} and {x, y, x + y}, x 6= y,
the second moment has 42 configurations.

We denote the weight W (K) to be the number of isomorphic configuration K that
occurs in the sum. For each K, we find E[XS1XS2 ] and W (K), then apply the
following relation for E[X2],

E[X2] =
∑

[S1,S2]

E[XS1XS2 ] =
∑
K∈K

E[XS1XS2 ] ·W (K).

The first quantity, E[XS1XS2 ] is not hard to compute. Let p := |S1 ∪ S2|.

E[XS1XS2 ] =


c

cp
, if |S1 ∩ S2| 6= 0,

c2

cp
if |S1 ∩ S2| = 0.

The second quantity, W (K) is harder to compute. One way to do so is to use
Goulden-Jackson Cluster method, see [5]. This method gives us a generating function
in terms of n.

Formulas: E[X2] has 12 formulas up to the values of n mod 12.

We obtain the formulas by applying both Goulden-Jackson Cluster method and
polynomial ansatz. For each K contributes to E[X2], we first find the generating
function using Goulden-Jackson Cluster method. This gives us the period l of K.
Then we count W (K) numerically for each n. Finally we interpolate the polynomial,
f(n) of degree at most 4 with each period l that fits the numerical results. This
polynomial ansatz actually gives the rigorous proof of the second moment.

As an example, we show the formula of E[X2] for n ≡ 1 mod 12,

E[X2] =
(n− 1)(24c3 − 76c− 27n+ 65− 9n2 + 12cn2 + 24c2n+ 3n3 − 16c2)

48c4
.
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The complete solutions of E[X2] and E[(X − µ)2] can be found in Maple program
SchurT.txt on the author’s web site.

The higher moment:

We now consider m-tuples [S1, S2, ..., Sm] of triples {x, y, x+ y} of [1, n].

E[Xm] =
∑

[S1,S2,..,Sm]

E[XS1XS2 ..XSm ].

We again consider for each isomorphic configuration K, its weight W (K) and its
probability E[XS1XS2 ..XSm ].

For E[X3], there are more than 500 isomorphic configurations of S1 ∪ S2 ∪ S3 with
at least 72 formulas up to the values of n mod 72. We tried for about 3 weeks, but
in the end, we felt like it is too much. At least we know it is not easy to compute
these moments.

3 Method of Moments for Asymptotic Normality

In the case where we work with objects with a nice generating, we will try to show
that asymptotically their distribution is normal. In this section, we will layout the
method of moments for this purpose. We first define the moment generating function
φ(t).

Definition. φ(t) := E[etX ] =


∑
x

etxp(x) if x is discrete∫∞
−∞ e

txf(x)dx if x is continuous.

Moment generating function of standard normal distribution looks like

φ(t) =
1√
2π

∫ ∞
−∞

etxe−
x2

2 dx =
1√
2π
e
t2

2

∫ ∞
−∞

e−
(x−t)2

2 dx = e
t2

2 .

To show asymptotic normality of some combinatorial objects, we will show that,
asymptotically, their moment generating functions (after centralize and normalize)

are e
t2

2 .

Another method is to match their coefficients. The Maclaurin series of e
t2

2 is
∞∑
r=0

t2r

r!2r
.
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On the other hand, the general series expansion of moment generating function (for
the discrete objects) is

φ(t) = E[etX ] =
∑
x

∑
n

tnxn

n!
p(x) =

∑
n

tn

n!

∑
x

xnp(x) =
∑
n

tn

n!
mn,

where mn = E[Xn]. We note that E[Xn] = φn(0) as well.

Comparing these two series, we need to show that m2r =
(2r)!

r!2r
and m2r−1 = 0.

4 Inversion and Major Index

Inversion number of a permutation is the number of “misplace” between the pair of
elements. Let π be a permutation. The inversion number, inv(π), is the number of
pair (i, j) such that i > j and π(i) < π(j). For example, inv(52314) = 6 from the
pairs (5, 2), (5, 3), (5, 1), (5, 4), (2, 1), (3, 1). As an application, the inversion numbers
are used in the Laplace expansion when we calculate the determinant of squared
matrix.

The probability generating function over all permutation of length n is defined as

Fn(q) :=
1

n!

∑
π∈Sn

qinv(π).

Fn(q) has a nice formula which can be shown by induction on n,

Fn(q) =
1

n!

n∏
i=1

1− qi

1− q
.

The mean, µn := E[X], of inversion number over all permutation of length n is
n(n− 1)

4
. This can be seen combinatorially or through generating function, i.e.

E[X] = F ′n(q)|q=1. Therefore, the probability generating function about the mean is

Gn(q) =
1

n!qn(n−1)/4

n∏
i=1

1− qi

1− q
.

From here, we (or our computer friend) derive that the variance, σ2
n = V arn :=

E[(X − µ)2], is
n(n− 1)(2n+ 5)

72
.

On the other hand, the major index of a permutation, maj(π), is the sum of the
positions of the descents of the permutation, i.e.

maj(π) =
∑

π(i)>π(i+1)

i.
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For example maj(52314) = 1 + 3 = 4.

It is a well known result that the distributions over all permutations of length n of
inversion number and major index are the same. This fact was shown by MacMahon
in 1913, [4].

William Feller ([3], 3rd ed., p.257) proved that the number of inversions (and hence
also the major index) is asymptotically normal. That is if we let Yn be the centralized

and normalized random variable Yn =
inv − µn

σn
, then Yn → N , as n → ∞, in

distribution, where N is the Gaussian distribution whose probability density function

is
e

−x2
2

√
2π

.

Moreover, in 2010, Baxter and Zeilberger, [1], showed that the inversion numbers
and the major index are asymptotically joint-independently-normal. This is an
impressive result.

In this section, we show the asymptotic normal distribution of inversion numbers (also
number of major index). We follow the method in [2]. The outline of the method is

similar to Feller. We show that Yn :=
Xn − n(n− 1)/4√
n(n− 1)(2n+ 5)/72

∼ N(0, 1) as n → ∞.

Although this time we show by moment calculation method, i.e. m2r =
(2r)!

2rr!
and

m2r−1 = 0 for every r, where mr = E[Y r]. Note that the odd moment case is
obviously seen from symmetry.

4.1 Asymptotic-Normality of Inversion Numbers

The goal is to find the binomial moment Br(n) := E[
(
Xn−µ
r

)
] (before we convert it

back to mr). This binomial moment is the coefficient of Taylor series expansion of
Gn(q) at 1. Writing q = 1 + z then

Gn(1 + z) =
∞∑
k=0

p(x = k)(1 + z)k =
∞∑
k=0

p(x = k)
k∑
r=0

(
k

r

)
zr

=
∞∑
r=0

zr
∑
k

(
k

r

)
p(x = k) =

∞∑
r=0

Br(n)zr.

Toward that, we consider

Gn(q)

Gn−1(q)
=

1

nq(n−1)/2
· 1− qn

1− q
.
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We then define P (n, z) by replacing q with 1 + z in the above equation:

P (n, z) =
1

n(1 + z)(n−1)/2
· 1− (1 + z)n

1− (1 + z)
.

The Taylor expansion of P (n, z) from Maple looks like

P (n, z) = 1 +
(n− 1)(n+ 1)

24
z2 − (n− 1)(n+ 1)

24
z3

+
(n− 1)(n+ 1)(n2 + 71)

1920
z4 − (n− 1)(n+ 1)(n2 + 31)

960
z5 + . . .

The general formula is not difficult to find:

P (n, z) =
∞∑
i=0

pi(n)zi,

where

pi(n) =
1

n

i∑
s=0

(−1)s
(
n−3
2

+ s

s

)(
n

i+ 1− s

)
.

Now consider the recurrence

Gn(1 + z) = P (n, z)Gn−1(1 + z).

By comparing the coefficient of zr on both sides of the equation, we have

Br(n)−Br(n− 1) =
r∑
s=1

ps(n)Br−s(n− 1). (1)

With this recurrence we can prove the conjecture of leading term of Br(n) by an
induction on r.

We see from the formula that the leading term of pi(n) is

L{pi(n)} =


i∑

s=0

(−1)s

2ss!(i+ 1− s)!
ni =

ni

2i(i+ 1)!
, when i is even,

− i− 1

2i · i!
ni−1, when i is odd.

We now can prove the leading term of BR(n).
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Theorem 1.

B2r(n) =
n3r

r!23r32r
+ lower order terms ,

B2r+1(n) = − n3r

(r − 1)!23r32r
+ lower order terms.

Proof. We calculate directly that B0(n) = 1 and B1(n) = 0. For R ≥ 2, we verify
the leading terms on both sides of (1) which in turn equivalent to do induction on
R.

Case R = 2r:

The leading term of the left hand side of (1):

L{B2r(n)−B2r(n− 1)} =
3r

r!23r32r
n3r−1.

The leading term of the right hand side of (1):

L{
2r∑
s=1

ps(n)B2r−s(n− 1)} = L{p2(n)B2r−2(n− 1)}

=
n2

24
· n3r−38 · 9

(r − 1)!23r32r

=
n3r−13

(r − 1)!23r32r
.

Case R = 2r + 1:

The leading term of the left hand side of (1):

L{B2r+1(n)−B2r+1(n− 1)} = − 3r

(r − 1)!23r32r
n3r−1.

The leading term of the right hand side of (1):

L{
2r+1∑
s=1

ps(n)B2r+1−s(n− 1)} = L{p1(n)B2r(n− 1) + p2(n)B2r−1(n− 1) + p3(n)B2r−2(n− 1)}

= 0− n2

24
· n3r−38 · 9

(r − 2)!23r32r
− 2n2

8 · 3!
· n3r−38 · 9

(r − 1)!23r32r

= − n3r−1

(r − 1)!23r32r
(3(r − 1) + 3).

The leading terms on both sides are equal in both cases.
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Remark. In fact we can show as many leading terms as we’d like i.e.

B2r(n) =
n3r

r!23r32r

[
1 +

3r(31− 6r)

50n
+O(1/n2)

]
,

B2r+1(n) = − n3r

(r − 1)!23r32r

[
1 +

3r(31− 6r)

50n
+O(1/n2)

]
.

We encourage the reader to check the calculation themselves.

The last step is to turns the binomial moments Br(n) to the straight moment Mr(n)
using the well known identity:

Mr(n) =
r∑
i=0

{
r

i

}
Bi(n) · i!,

where
{
r
i

}
is a Stirling number of the second kind i.e. number of ways to partition

r objects into i non-empty subsets.

Then the leading term of Mr(n) is

L{M2r(n)} = L{B2r(n)} · (2r)!,
and

L{M2r+1(n)} = L{B2r+1(n)} · (2r + 1)! +

(
2r + 1

2

)
L{B2r(n)} · (2r)!.

The simple calculation leads us to next corollary.

Corollary 2.

M2r(n) =
(2r)!

r!23r32r
n3r + lower order terms ,

M2r+1(n) = 0 · n3r + lower order terms.

The coefficient of n3r in M2r+1(n) is 0. So we know that the actual leading term has
degree in n less than 3r.

It is now easy to verify the claim that m2r :=
M2r(n)

M2(n)r
is

(2r)!

2rr!
and m2r+1 :=

M2r+1(n)

M2(n)r+1/2
is 0 asymptotically.

Remark. It is possible to extend the result to as many leading terms of mr as we’d
like, i.e.

m2r =
(2r)!

2rr!

(
1− 9r(r − 1)

25n
+

9r(r − 1)(441r2 − 205r − 129)

61250n2

− 3r(r − 1)(7938r4 − 3132r3 − 27252r2 − 20202r + 2221835)

3062500n3
+ ...

)
,

m2r+1 = 0.
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4.2 Asymptotic-Normality of Major Index

Asymptotic-Normality of Major Index already follows from those of inversion num-
bers. However this time we want to show it by starting with recursive relations right
away rather than the known generating function. This recursive relation method is
from the awesome paper [1] mentioned earlier.

Generating Function

Define generating function of major index:

Hn(q) :=
∑
π∈Sn

qmaj(π).

The recurrence relation comes from considering the last 2 elements in the permuta-
tion.

maj(π′′ji) =

{
maj(π′′j) if j < i;

maj(π′′j) + n− 1 if j > i.

So in order to compute Hn(q), we introduce the more general counting function of
permutations (in Sn) that end with an i. Let’s call it F (n, i)(q).

F (n, i)(q) :=
∑
π∈Sn
π(n)=i

qmaj(π).

It follows that (dropping the argument q):

F (n, i) =
i−1∑
j=1

F (n− 1, j) + qn−1
n−1∑
j=i

F (n− 1, j),

with F (1, 1) = 1. Note that, after chopping i, the index of the second sum has been
rearranged.

Replacing i by i+ 1 in the above equation, we have:

F (n, i+ 1) =
i∑

j=1

F (n− 1, j) + qn−1
n−1∑
j=i+1

F (n− 1, j).

Then subtract the former with the latter to get

F (n, i)− F (n, i+ 1) = −F (n− 1, i) + qn−1F (n− 1, i)

= −(1− qn−1)F (n− 1, i) for 1 ≤ i < n. (2)
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Another important relation,

F (n, n) =
n−1∑
j=1

F (n− 1, j). (3)

Finally, the connection between Hn and F (n, i) is

Hn(q) = F (n+ 1, n+ 1)(q).

Centralized Probability Generating Function

Consider the centralized probability generating function:

G(n, i)(q) :=
F (n, i)(q)

(n− 1)!qn−i+(n−1)(n−2)/4 .

The recurrences (2) and (3) become:

G(n, i) =
1

q
G(n, i+ 1) +

qn−1 − 1

qn/2(n− 1)
G(n− 1, i) for 1 ≤ i < n, (4)

and

G(n, n) =
1

n− 1

n−1∑
j=1

qn/2−jG(n− 1, j). (5)

Guessing the Binomial Moments

The equations (4) and (5) help us to crank out G(n, i)(q) very quickly which will
help us to conjecture the binomial moment Br(n, i) through the Taylor series:

G(n, i)(1 + z) =
∞∑
r=0

Br(n, i)z
r.

The conjectures that we made here are similar to what we had before, i.e. for
1 ≤ i ≤ n,

B2r(n, i) =
1

2rr!

(
n3

36

)r
+ lower-order-term-in-n.

B2r+1(n, i) = − r

2rr!

(
n3

36

)r
+ lower-order-term-in-n.

Guessing is nice and all. But how to prove?
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You can make a recurrence out of (4) and (5), i.e. comparing coefficient of zr on
both sides:

Br(n, i) = Br(n, i+ 1)−Br−1(n, i+ 1) +Br−1(n− 1, i) +Br−2(n, i+ 1)

−Br−2(n− 1, i)−Br−3(n, i+ 1) +

(
n2

24
− n

12
+ 1

)
Br−3(n− 1, i)

+Br−4(n, i+ 1) +

(
−n2

12
+
n

6
− 1

)
Br−4(n− 1, i)

+ lower-order-term-in-n, 1 ≤ i < n, (6)

Br(n, n) =
1

n− 1

n−1∑
j=1

[
Br(n− 1, j) +

(n
2
− j
)
Br−1(n− 1, j)

+

(n
2
− j
2

)
Br−2(n− 1, j) +

(n
2
− j
3

)
Br−3(n− 1, j)

+ lower-order-term-in-n
]
. (7)

It is possible to show that G(n, i)(q) are the same for all 1 ≤ i ≤ n. As a result
Br(n, i) = Br(n, j) for all 1 ≤ i, j ≤ n. We simplify (6) and (7) using this claim.

Br(n, i)−Br(n− 1, i) = Br−1(n, i)−Br−1(n− 1, i)

−Br−2(n, i) +

(
n2

24
− n

12
+ 1

)
Br−2(n− 1, i)

+Br−3(n, i) +

(
−n2

12
+
n

6
− 1

)
Br−3(n− 1, i)

+ lower-order-term-in-n, 1 ≤ i < n, (8)

Br(n, n)−Br(n− 1, j) =
n(n− 2)

24
Br−2(n− 1, j)− n(n− 2)

24
Br−3(n− 1, j)

+ lower-order-term-in-n. (9)

We note that
n−1∑
j=1

(n
2
− j
)

= 0,
n−1∑
j=1

(
n
2
− j
2

)
=
n(n− 1)(n− 2)

24
and

n−1∑
j=1

(
n
2
− j
3

)
=

−n(n− 1)(n− 2)

24
.

We could prove the conjectures by applying either (8) or (9). We choose to show by
(8).

Theorem 3. For 1 ≤ i ≤ n,

B2r(n, i) =
1

2rr!

(
n3

36

)r
+ lower-order-term-in-n.

B2r+1(n, i) = − r

2rr!

(
n3

36

)r
+ lower-order-term-in-n.
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Proof. We calculate directly that B0(n, i) = 1 and B1(n, i) = 0. For R ≥ 2, we verify
the leading terms on both sides of (8) which in turn equivalent to do induction on
R.

Case R = 2r: The leading term of the left hand side of (8):

L{B2r(n, i)−B2r(n− 1, i)} =
3r

r!72r
n3r−1.

The leading term of the right hand side of (8):

L{n
2

24
B2r−2(n− 1, i)} =

n2

24
· n3r−3

(r − 1)!72r−1
=

3r · n3r−1

r!72r
.

Case R = 2r + 1: The leading term of the left hand side of (8):

L{B2r+1(n, i)−B2r+1(n− 1, i)} =
−3r2

r!72r
n3r−1.

The leading term of the right hand side of (8):

L{RHS} =
3r · n3r−1

r!72r
− n2

24
· (r − 1)n3r−3

(r − 1)!72r−1
− n2

12
· n3r−3

(r − 1)!72r−1
=
−3r2 · n3r−1

r!72r
.

Lastly we define Gn(1+z) :=
n∑
i=1

G(n, i)(1+z) = G(n+1, n+1)(1+z). The leading

term from theorem 3 implies the leading term of Br(n) of Gn(1+z) =
∑∞

r=0Br(n)zn

since we can see that Br(n) = Br(n + 1, n + 1). From this point on, the normality
distribution of the random variable of major index on permutation of length n can
be shown the same way as in the last part of section 4.1 on inversion numbers.

5 Boolean Functions

Boolean function is function that sends each element in the Boolean domain Bn :=
{0, 1}n to {0, 1}.

For example, a boolean function with n = 3 is shown in the form of the truth table,

14



000 0
001 1
010 0
011 1
100 1
101 1
110 0
111 1

The boolean function in a “disjunctive normal form” (DNF) that represents this
table is

x̄1x̄2x3 ∨ x̄1x2x3 ∨ x1x̄2x̄3 ∨ x1x̄2x3 ∨ x1x2x3.

With the length n is 3, the possible number of terms is 23 = 8 and the possible
number of boolean functions is 223 = 28 = 256. In general, there are 22n possibilities
of boolean function of length n.

We write the boolean function by the set of elements that map to 1. In the example
above, f = {001, 011, 100, 101, 111} . From this point of view, the boolean function
is a set of vertices in a n-dimensional unit cube. From this point onward, we will
look at the boolean function from this angle and denote the set of vertices as f .

5.1 Asymptotic Normality of Number of Elements in f

The result from the name of this section might sounds obvious. The distribution
is just a binomial. But we will calculate the moments and hopefully obtain some
formulas and identities along the way.

Let B be a sample space of all 22n boolean functions. Let X := X0(f) be a random
number of 0-cube (0-dimension subspace), i.e. number of elements that are contained
in the set f of boolean function. Of course, 0 ≤ X ≤ 2n. We want to work toward the

asymptotic normality of X. Basically, we want to show that Yn :=
Xn − µ
σ

∼ N(0, 1)

as n → ∞. We actually show the even moment of Yn : m2r =
(2r)!

2rr!
and the odd

moment of Yn : m2r−1 = 0 for every r. But the odd moment case is obviously seen

from symmetry. Therefore we only show that asymptotically
E[(X − µ)2r]

σ2r
=

(2r)!

2rr!
.

The Generating Function Method

Define the generating function Fn(q) by Fn(q) =
∑∞

k=0 akq
k, where k is the number

of elements in the set f and ak is the number of ways to have k elements with each
elements have length n. The formula for Fn(q) is (each element has 1/2 chance to be

15



in f and 1/2 chance to be out of f),

Fn(q) =

(
1 + q

2

)2n

.

The generating function about the mean Gn(q) is

Gn(q) =

(
1 + q

2

)2n
1

q2n−1 .

This binomial moment is the coefficient of Taylor series expansion of Gn(q) at 1.
Writing q = 1 + z, we have

Gn(1 + z) =
∞∑
r=0

Br(n)zr.

Toward that, we consider

Gn(q)

Gn−1(q)
=

[
1 + q

2
√
q

]2n−1

.

We then define P (n, z) by replacing q with 1 + z in the above equation:

P (n, z) :=
Gn(1 + z)

Gn−1(1 + z)
=

[
2 + z

2
√

1 + z

]2n−1

. (10)

The Taylor expansion of P (n, z) from Maple looks like

P (n, z) = 1 +
2n

16
z2 − 2n

16
z3 +

(
4n

512
+

7 · 2n

128

)
z4

−
(

4n

256
+

3 · 2n

64

)
z5 + . . .

Let the expansion of P (n, z) be

P (n, z) =
∞∑
i=0

pi(n)zi.

It can be shown from (10) that the leading term of pi(n) is

L{p2r(n)} =
2rn

24rr!
,

L{p2r+1(n)} =
−2rn

24r(r − 1)!
.

16



Now consider the recurrence

Gn(1 + z) = P (n, z)Gn−1(1 + z). (11)

By comparing the coefficient of zr in (11) on both sides of the equation, we have

Br(n) =
r∑
s=0

ps(n)Br−s(n− 1). (12)

With this recurrence, we can prove the leading term of BR(n), by induction on R.

Theorem 4.

B2r(n) =
2rn

r!8r
+ lower order terms in 2n,

B2r+1(n) =
−2rn

(r − 1)!8r
+ lower order terms in 2n.

Proof. We calculate directly that B0(n) = 1 and B1(n) = 0. For R ≥ 2, we verify
the leading terms on the right hand sides of (12).

Case R = 2r:

L{
2r∑
s=0

ps(n)B2r−s(n− 1)} = L{
r∑
t=0

p2t(n)B2(r−t)(n− 1)}

=
r∑
t=0

2tn

16tt!
· 2(r−t)(n−1)

(r − t)!8r−t

=
2rn

16r

r∑
t=0

1

t!(r − t)!
=

2rn

16r
2r

r!
.

Case R = 2r + 1:

L{
2r+1∑
s=0

ps(n)B2r+1−s(n− 1)} = L{
r∑
t=0

p2t(n)B2(r−t)+1(n− 1) +
r∑
t=0

p2t+1(n)B2(r−t)(n− 1)}

=
r∑
t=0

2tn

16tt!
· −2(r−t)(n−1)

(r − 1− t)!8r−t
+

r∑
t=0

−2tn

16t(t− 1)!
· 2(r−t)(n−1)

(r − t)!8r−t

=
−2rn

16r

r∑
t=0

(
1

t!(r − 1− t)!
+

1

(t− 1)!(r − t)!

)
=
−2rn

16r
2r

(r − 1)!
.

17



Once these have been verified, we turns the binomial moments Br(n) to the straight
moment Mr(n) := E[(X −µ)r], similar to section 4.1, using the well known identity:

Mr(n) =
r∑
i=0

{
r

i

}
Bi(n) · i!,

The simple calculation leads us to next corollary.

Corollary 5.

M2r(n) =
(2r)!2rn

r!8r
+ lower order terms in 2n,

M2r+1(n) = C(r) · 2rn + lower order terms in 2n,

It is now easy to verify the condition for normality that m2r =
M2r(n)

M2(n)r
=

(2r)!

2rr!
and

m2r+1 =
M2r+1(n)

M2(n)r+1/2
= 0 as n→∞.

5.1.1 Moment Calculations

In this subsection, we apply the overlapping stage approach to calculate E[Xr] and
relate it to the moment about the mean E[(X − µ)r].

First we calculate the straight moment E[Xr], r ≥ 0. The first moment is easy.

E[X] =
1

2

(
2n

1

)
= 2n−1.

For the second moment,

E[X2] =
∑
S1

E[X2
S1

] +
∑
S1 6=S2

E[XS1XS2 ] =
1

2

(
2n

1

)
+ 2!

1

22

(
2n

2

)
=

2n

4
(2n + 1).

For the third moment,

E[X3] =
1

2

(
2n

1

)
+ (3)2!

1

22

(
2n

2

)
+ 3!

1

23

(
2n

3

)
= 22n−3(2n + 3).

For the fourth moment,

E[X4] =
1

2

(
2n

1

)
+(7)2!

1

22

(
2n

2

)
+(6)3!

1

23

(
2n

3

)
+4!

1

24

(
2n

4

)
= 2n−4(22n+5·2n−2)(2n+1).

18



These moments are calculated based on how they overlap with each other. In general,
the rth moment is

E[Xr] =
r∑
i=0

{
r

i

}
i!

2i

(
2n

i

)
=

r∑
i=0

{
r

i

}
(2n)i

2i
, (13)

where
{
r
i

}
is again a Stirling number of the second kind.

We use these straight moment to calculate the moments about the mean,

E[(X − µ)r] =
r∑
i=0

(−1)r−i
(
r

i

)
E[X i]µr−i, r ≥ 0, (14)

where µ = E[X] = 2n−1.

Some examples of these moments are

V ar(X) = E[(X − µ)2] = 2n−2,

E[(X − µ)4] = 2n−4(3 · 2n − 2),

E[(X − µ)6] = 2n−6(15 · 22n − 30 · 2n + 16),

E[(X − µ)8] = 2n−8(105 · 23n − 420 · 22n + 588 · 2n − 272),

E[(X − µ)2r+1] = 0, r ≥ 0.

The general formula is

E[(X − µ)r] =
r∑
i=0

(
r

i

)
E[X i](−2n−1)r−i

=
r∑
i=0

(
−1

2

)r−i(
r

i

) i∑
j=0

{
i

j

}
(2n)j

(2n)r−i

2j

Therefore coefficient of 2n(r−t) is

r∑
i=t

(
−1

2

)r−i(
r

i

) i∑
j=i−t

1

2j

{
i

j

}
s(j, i− t). (15)

where s(i, k) is a Stirling number of the first kind.

New identities

We relate the results of corollary 5 and observation that M2r+1(n) = 0 to (15) to
gain some new identities.

For case r is odd and 0 ≤ t ≤ r and case r is even and 0 ≤ t < r/2,

r∑
i=t

(
−1

2

)r−i(
r

i

) i∑
j=i−t

1

2j

{
i

j

}
s(j, i− t) = 0.
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For r = 2k and t = k, we have

r∑
i=t

(
−1

2

)r−i(
r

i

) i∑
j=i−t

1

2j

{
i

j

}
s(j, i− t) =

(2k)!

8kk!
.

5.2 Moments of Numbers of 1-dimensional Cube in f

Now we consider X1(f), a random number of 1-dimension subspace that is contained
in f . For example, consider n = 3, f = {000, 001, 101, 011, 111}. We have X0(f) = 5
and X1(f) = 5 namely 00B, 0B1, B01, 1B1, B11. Note that 0 ≤ X1(f) ≤ n2n−1.

Define the generating function Fn(q) by Fn(q) =
∑∞

k=0 akq
k, where k is the number

of 1-dimensional cube in the set f of boolean function of length n and ak is the
number of boolean functions f that has k number of 1-dimensional cubes. This time
Fn(q) looks complicate. Some of them are

F1(q) =
1

4
(3 + q),

F2(q) =
1

16
(7 + 4q + 4q2 + q4)

F3(q) =
1

256
(35 + 36q + 54q2 + 40q3 + 30q4 + 24q5 + 16q6 + 12q7 + 8q9 + q12).

It is very difficult, if not impossible, to find a general formula for Fn(q). However we
show a strong empirical evidence in section 7.2 that the distribution (case k = 1)
once again converges to normal.

LetX := X1(f). We now apply the overlapping state approach to calculate E[Xr], r ≥
0. A few of them are

E[X] =
1

22
n2n−1,

E[X2] = 1-cube overlap + 0-cube overlap + no overlap

=
n2n−1∑
i=1

E[X2
i ] +

4n(n−1)2n−2∑
i=1

E[X2
i ] +

Rest∑
i=1

E[X2
i ]

=
n2n−1

22
+

4n(n− 1)2n−2

23
+

(n2n−1)2 − 4n(n− 1)2n−2 − n2n−1

24

=
n2n

64
(2 + 4n+ n2n),
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E[X3] = 1-cube overlap + 0-cube overlap + no overlap

=
a

22
+

b

23
+

c

24
+

3a(a− 1)

24
+
b(a− 3n+ 2)

25

+
a3 − [a+ b+ c+ 3a(a− 1) + b(a− 3n+ 2)]

26
,

where a = n2n−1, b = 3 · 4n(n− 1)2n−2 and c = 4 · 8n(n− 1)(n− 2)2n−3

=
n2

29
[24n2n + 6(2n+ 1)22n + n23n].

We did not manage to find formulas for other moments. Some moments about the
mean are

V ar(X) = E[(X − µ)2] =
n(2n+ 1)2n

32
,

E[(X − µ)3] =
3n32n

64
.

5.3 Moments of Numbers of k-dimensional Cube in f

Let k be the size of the cube. Example, the cube of size 2 is {00, 01, 10, 11} or the
cube of size 2: 11B0B is { 11000, 11001, 11100, 11101}. Let the random variable Xk

be the number of k-dimensional cubes in the boolean function of length n.

Our goal is to design an algorithm that inputs symbolic n and k and numeric r and
outputs E[Xr

k ], the r-th moment of k-dimensional cubes contains in boolean function
f , of length n (n variables).

The first moment (for any k) is

E[X] =

(nk)2n−k∑
i=1

E[Xi] =

(
n

k

)
2n−k · 1

22k
,

since E[Xi] = P (Xi = 1) =
1

22k
as all the 2k entries of k-cube must be there.

The calculation of the second moment is more complicated as we must keep track of
interactions between Xi and Xj.
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For k = 2 :

E[X2] = 2-cube overlap + 1-cube overlap + 0-cube overlap + no overlap

=

(
n

2

)
2n−2E[X2

1 ] + 4

(
n

1, 1, 1, n− 3

)
2n−3E[X2

2 ]

+ 16

(
n

2, 2, n− 4

)
2n−4E[X2

3 ] +Rest · E[X2
4 ]

=

(
n
2

)
2n−2

24
+

4
(

n
1,1,1,n−3

)
2n−3

26
+

16
(

n
2,2,n−4

)
2n−4

27
+
Rest

28

=
n(n− 1)

214
[8(2n2 + 2n+ 3)2n + n(n− 1)4n].

We can see the pattern for general k: (think of i as an i-cube intersects between two
objects)

E[X2] =
k∑
i=0

22(k−i)
(

n

i, k − i, k − i, n− 2k + i

)
2n−2k+i · 1

22k+1−2i +
Rest

22k+1

=
k∑
i=0

(
n

i,k−i,k−i,n−2k+i

)
2n−i

22k+1−2i +
Rest

22k+1

=
k∑
i=0

(
n

i,k−i,k−i,n−2k+i

)
2n−i

22k+1 · (22i − 1) +

[(
n
k

)
2n−k

]2
22k+1 ,

where Rest =

[(
n

k

)
2n−k

]2
−

k∑
i=0

(
n

i, k − i, k − i, n− 2k + i

)
2n−i.

The formula for the case k = 3 is

E[X2] =
n(n− 1)(n− 2)

22432
[16(4n3 + 6n2 + 80n+ 363)2n + n(n− 1)(n− 2)4n].

The general formula for variance is

E[(X − µ)2] = E[X2]− E[X]2 =
k∑
i=0

(
n

i,k−i,k−i,n−2k+i

)
2n−i

22k+1 · (22i − 1).

The leading term of E[(X − µ)2] can be seen to be
n2k2n

(k!)222k+1 .

The calculation for the third moment is much more complicated, we only manage to
find it for the case k = 0 and k = 1.
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6 Dominos on Boolean Boards

Consider the rectangle board of size m×n with each of the square filled with number
0 or 1 randomly. Let X be the random variable of number of 2-by-1 domino piece
with “the same number” vertically or horizontally.

For example, on 3-by-3 board:

Xleft = 8, Xright = 7.

We want to find E[Xr] and E[(X − µ)r] for a fixed r but general m,n.

The simplest case, E[X] for a 2-by-n board is

1

2
,
4

2
,
7

2
,
10

2
,
13

2
,
16

2
,
19

2
, . . .

We see that E[X(2,n)] =
3n− 2

2
.

The data of 2mn · E[X] from the program are

m : n 1 2 3 4 5 6 7 8
1 0 2 8 24 64 160 384 896
2 2 32 224 1280 6656 32768 155648 720896
3 8 224 3072 34816 360448
4 24 1280 34816 786432

These numbers are 2mn−1(2mn−m− n). Hence µ := E[X(m,n)] = mn− m
2
− n

2
. This

observation can be proved combinatorially too.

Let’s move to the second moment. The data of 2mn · E[X2] are

m : n 1 2 3 4 5 6 7 8
1 0 2 12 48 160 480 1344 3584
2 2 80 896 7040 46592 278528 1556480 8290304
3 12 896 19968 313344 4145152
4 48 7040 313344 9830400
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These numbers are 2mn(mn−m/2−n/2 + 1/2)(mn−m/2−n/2) = 2mnµ(µ+ 1/2).
Hence E[X2] = µ(µ + 1/2) = µ2 + µ

2
. It follows that V ar = E[X2] − E[X]2 = µ

2
.

This observation can be shown formally using the overlapping stage method.

E[X2] =
∑
i,j

E[XiXj] =
∑
i

E[X2
i ] +

∑
i,j:i 6=j

E[XiXj]

=
1

2
A+

1

4
A(A− 1) =

A2

4
+
A

4

= µ2 +
µ

2
,

where A = 2mn − m − n, the number of possible ways to put the domino on an
m-by-n board.

Next is the third moment. The data of 2mn · E[X3] are

m : n 1 2 3 4 5 6 7 8
1 0 2 20 108 448 1600 5184 15680
2 2 224 3920 41600 346112 2490368 16265216 99123200
3 20 3920 138240 2959360 49561600
4 108 41600 2959360 127401984

These numbers are 2mnµ2(µ+ 3/2). Then E[X3] = µ2(µ+ 3/2). Then it follows that
E[(X − µ)3] = E[X3]− 3E[X2]E[X] + 2E[X]3 = 0. For formal proof, we apply the
overlapping stage approach.

E[X3] =
∑
i,j,k

E[XiXjXk] =
∑
i

E[X3
i ] +

∑
i,j:i 6=j

E[X2
iXj] +

∑
i,j,k:i 6=j 6=k

E[XiXjXk]

=
1

2
A+

1

4
(3)A(A− 1) +

1

8
A(A− 1)(A− 2)

= µ3 +
3µ2

2
,

where again A = 2µ.

The higher moments can be calculated directly by

E[Xr] =
r∑
i=1

{
r

i

}
(A)i
2i

,

where (A)i = A(A− 1)(A− 2) . . . (A− i+ 1).
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Some examples are

E[X4] =
µ(2µ+ 1)(2µ2 + 5µ− 1)

4
,

E[X5] =
µ2(4µ3 + 20µ2 + 15µ− 5)

4
,

E[X6] =
µ(2µ+ 1)(4µ4 + 28µ3 + 31µ2 − 23µ+ 4)

8
.

The moments about the mean are

E[(X − µ)2r+1] = 0, r = 0, 1, 2, ...,

V ar := E[(X − µ)2] =
µ

2
,

E[(X − µ)4] =
µ(3µ− 1)

4
,

E[(X − µ)6] =
µ(15µ2 − 15µ+ 4)

8
.

6.1 Asymptotic Normality of X on the Board of size 1-by-n

Consider board of size 1-by-n. We will work toward the general formula of the leading
terms of E[(X − µ)r] and use it to show normality of X.

It is easy to see that the probability generating function Fn(q) is

(
1 + q

2

)n−1
. The

centralized probability generating function

Gn(q) =
(1 + q)n−1

q(n−1)/22n−1
=

(
q1/2 + q−1/2

2

)n−1
.

We will use the same technique as in the inversion number section of getting a
recurrence. We start with the fact that

Gn(1 + z) =
∞∑
r=0

Br(n)zr, (16)

where Br(n) := E[
(
X
r

)
], the binomial moment.

Also notice that

Pn(q) :=
Gn(q)

Gn−1(q)
=
q1/2 + q−1/2

2
.

Hence,

Pn(1 + z) =
2 + z

2(1 + z)1/2
= 1 +

1

8
z2 − 1

8
z3 +

15

128
z4 − 7

64
z5 + . . . .
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Then we form the recurrence using (16) and Gn(1 + z) = Pn(1 + z)Gn−1(1 + z):

Br(n) = Br(n− 1) +
1

8
Br−2(n− 1)− 1

8
Br−3(n− 1) + . . . . (17)

With the help of computer, we conjecture the formula of the leading term of Br(n)
(general r) and apply the induction on r to (17) to prove the formula.

The Taylor expansion of Gn(1 + z) around z = 0 looks like

1 +
(n− 1)

8
z2 − (n− 1)

8
z3 +

(n− 1)(n+ 13)

128
z4 − (n− 1)(n+ 5)

64
z5 + . . .

We conjecture that

B2r(n) =
nr

r!23r
+ lower order terms ,

B2r+1(n) = − nr

(r − 1)!23r
+ lower order terms.

Induction using equation (17) goes through without a problem (the reader is invited
to check that themselves). Finally we turns these binomial moment to straight
moment by a Stirling number of the second kind, i.e. E[Xr] =

∑
i

{
r
i

}
Bi(n) · i!. We

see that

E[(X − µ)2r] =
1

r!23r
· (2r)!nr + lower order terms ,

E[(X − µ)2r+1] =

(
− 1

(r − 1)!23r
· (2r + 1)! +

(2r + 1)(2r)

2

1

r!23r
· (2r)!

)
nr + lower order terms ,

= 0 · nr + lower order terms.

Hence, as n→∞,

E[(X − µ)2r]

V arr
=

(2r)!

r!2r
and

E[(X − µ)2r+1]

V arr+1/2
= 0,

and the normality of this case is proved.

Remark. We can do better by conjecture (and prove) more leading terms, i.e. we
claim that

B2r(n) =
nr

r!23r
+
r(4r − 5)nr−1

(r − 1)!23r
+ lower order terms ,

B2r+1(n) = − nr

(r − 1)!23r
− r(4r2 − 3r − 4)nr−1

3(r − 1)!23r
+ lower order terms.
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6.2 Asymptotic Normality of X on the Board of size m-by-n

For any fix m, the normality of X, a random number of dominoes, on the board of size
m-by-n as n→∞ follows from section 6.1 and the discussion before it. We learned
that, for each r, E[Xr] are all the same when written as a function of µ for any m
and n. Then the result follows from that X of board of size 1-by-n is asymptotically
normal. We note that, although the moments are the same for different m and n,
the generating functions for a fixed m ≥ 2 are more complicated and don’t seem to
have nice patterns.

7 The Moment Generating Function, φ(t)

In this section, we show the normality result of inversion numbers/major index and
Boolean board of size 1-by-n again but with the more direct method. We show that

lim
n→∞

Gn(et/σ) = et
2/2.

The outline of this method was already mentioned in section 3.

The generating function for Boolean functions case is more complicated. We found
a good simpler approximating generating function and try to show the normality of
that approximating generating function instead.

7.1 Inversion Numbers/Major Index

The centralized generating function of inversion numbers/major index is

Gn(q) =
1

n!qn(n−1)/4

n∏
i=1

1− qi

1− q
=

1

n!

n∏
i=1

qi/2 − q−i/2

q1/2 − q−1/2
.
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We consider

φ(t) := Gn(et/σ) =
1

n!

∏n
i=1

(
eit/2σ − e−it/2σ

2

)
(
et/2σ − e−t/2σ

2

)n

=
1

n!

∏n
i=1

(
it

2σ
+

1

3!

(
it

2σ

)3

+
1

5!

(
it

2σ

)5

+ . . .

)
(
t

2σ
+

1

3!

(
t

2σ

)3

+
1

5!

(
t

2σ

)5

+ . . .

)n

=

∏n
i=1

(
1 +

1

3!

(
it

2σ

)2

+
1

5!

(
it

2σ

)4

+ . . .

)
(

1 +
1

3!

(
t

2σ

)2

+
1

5!

(
t

2σ

)4

+ . . .

)n

Next we consider n→∞ and apply the fact that σ2 =
n(n− 1)(2n+ 5)

72
on both

numerator and denominator. First we note that

lim
n→∞

n∑
i=1

(
1

3!

(
it

2σ

)2

+
1

5!

(
it

2σ

)4

+ . . .

)
=
t2

2
,

and

lim
n→∞

n

(
1

3!

(
t

2σ

)2

+
1

5!

(
t

2σ

)4

+ . . .

)
= 0.

Lastly, since ln(
∏

(1 + xi)) =
∑

ln(1 + xi) ≈
∑
xi, when xi is small, we have

lim
n→∞

Gn(et/σ) = lim
n→∞

∏n
i=1

(
1 +

1

3!

(
it

2σ

)2

+
1

5!

(
it

2σ

)4

+ . . .

)
(

1 +
1

3!

(
t

2σ

)2

+
1

5!

(
t

2σ

)4

+ . . .

)n =
et

2/2

e0
= et

2/2.

Therefore the distribution of inversion numbers on the permutation of length n is
normal as n→∞.

7.2 Boolean Functions

We consider asymptotic normality of number of k-dimensional cube over the space of
Boolean functions of length n (n→∞). We learned from section 5.3 that it is very
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difficult to calculate the moment and the generating functions of these numbers. So
we have an idea that we assume the independent between each objects X that we
count and use it as an approximation of the actual numbers.

Experimental Math. on Generating Functions

We let Y be the random number of this k-dimensional cube that we mentioned. We
want to come up with its generating function and test the approximation.

We think of m as a number of elements in Boolean function f . Let pk be the
probability that the randomly chosen 2k elements, each with length n, forms a k-
cube.

pk =

(
n

k

)
(2k)!

2k2n(2k−1)
.

For examples, p0 = 1 and p1 =
n

2n
.

The probability generating function Hn(q) is

Hn(q) =
1

22n

2n∑
m=0

(
2n

m

) M∑
s=0

(
M

s

)
ps(1− p)M−sqs, where M =

(
m

2k

)

=
1

22n

2n∑
m=0

(
2n

m

)
(pq + 1− p)M .

We show the distributions of numbers of 1-cube (k = 1) with boolean function of
length n = 4 where the blue bars are from empirical data and the aqua bars are from
Hn(q). It looks quite close even with small n.
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Experimental Math. on Moments

We also compare the actual average E[X] =
(
n
k

)2n−k

22k
with E[Y ] = H ′n(q)|q=1 for

k = 0, 1, 2.

k = 0, E[X] = 2n−1, E[Y ] =
1

22n

2n∑
m=0

(
2n

m

)
·m = 2n−1.

k = 1, E[X] =
n2n

8
, E[Y ] =

1

22n

2n∑
m=0

(
2n

m

)
·
(
m

2

)
=
n(2n − 1)

8
.

k = 2, E[X] =

(
n

2

)
2n

64
, E[Y ] =

1

22n

2n∑
m=0

(
2n

m

)
·
(
m

4

)
=

(
n

2

)
2n − 6 + (11)2−n − (6)2−2n)

64
.

For the variances

k = 0, V ar[X] =
2n

22
, V ar[Y ] =

2n

22
.

k = 1, V ar[X] =
n(2n+ 1)2n

25
, L{V ar[Y ]} =

n[(2n+ 4)2n]

25
.

k = 2, V ar[X] =
n(n− 1)(2n2 + 2n+ 3)2n

211
,

L{V ar[Y ]} =
n(n− 1)(n2 − n+ 8)2n

210
.

Their leading terms are the same.

Experimental Math. on Normality

Some leading terms for case k = 1 of E[(Y − µ)r], r = 0, 1, 2, . . . are

1, 0,
n22n

16
,
3n32n

64
,
3n44n

256
,
15n54n

512
,
15n68n

4096
,
315n78n

16384
,
105n816n

65536
, ...

Some leading terms for case k = 2 of E[(Y − µ)r], r = 0, 1, 2, . . . are

1, 0,
n42n

210
,
9n62n

215
,
3n84n

220
,
45n104n

224
,
15n128n

230
, ...

These moments satisfy the condition that asymptotically
E[(Y − µ)2r]

σ2r
=

(2r)!

2rr!
and

E[(Y − µ)2r+1]

σ2r+1
= 0. We realize that the distributions for k = 1 and k = 2 converge

to normal once again.
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There are overwhelming evidences that the distribution of a random variable Y (as
does X) should converge to normal. Although we did not quite manage to show it
from the generating Hn(q) that we defined at the beginning of the section.

7.3 Boolean Board of Size 1-by-n

The centralized generating function of 1-by-n boolean board is

Gn(q) =

(
q1/2 + q−1/2

2

)n−1
.

Given that σ2 =
n− 1

4
, then

Gn(et/σ) =

(
e
t
2σ + e

−t
2σ

2

)n−1

=

(
1 +

1

2!

(
t

2σ

)2

+
1

4!

(
t

2σ

)4

+ . . .

)n−1

=

(
1 +

1

2!

t2

n− 1
+

1

4!

t4

(n− 1)2
+ . . .

)n−1
= et

2/2 as n→∞.

Therefore the distribution of number of 2-by-1 dominoes on the boolean board of
size 1-by-n is normal as n→∞.
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