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The rules of the game

We studied two of the many impartial, normal-play games on arithmetic
funtions that were introduced by Ianucci and Larsson.
Their rules are as follows.

(a) Saliquant. Subtract a non-divisor: For n ≥ 1,
opt(n) = {n − k : 1 ≤ k ≤ n : k ∤ n}.

(b) Nontotient. Subtract the number of relatively prime residues: For
n ≥ 1, opt(n) = {n − ϕ(n)}, where ϕ is Euler’s totient function.

In each case, the usual Sprague-Grundy theory applies.

SG(n) = mex{SG(s), s ∈ opt(n)}.

For time, today we will only discuss saliquant
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Intro to saliquant

Saliquant. Subtract a non-divisor: For n ≥ 1,
opt(n) = {n − k : 1 ≤ k ≤ n : k ∤ n}.

Larsson and Ianucci had already proved the following:

Lemma

If n is odd, then SG(n) = n−1
2

For all n ≥ 1, SG(n) < n
2

Proof.

If n is odd, then all smaller odd numbers are options, so by induction, the
first part shows SG(n) ≥ n−1

2 . By induction, the second part shows
SG(n) ≤ n−1

2 .
If n is even, then n − 1 and n − 2 are not options, so this case follows by
induction.
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Even values

Our task, therefore, was to investigate the nim-values of even positions.
The first few such values are:

n 2 4 6 8 10 12 14 16 18 20 22 24 26 28

SG(n) 0 1 1 3 2 4 6 7 4 7 5 10 12 10

n 30 32 34 36 38 40 42 44 46 48 50 52 54

SG(n) 13 15 8 13 9 17 17 16 11 22 22 19 25

Any guesses for SG(2b)?
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SG(2b)

Lemma

SG(2b) = 2b−1 − 1

Proof.

The numbers 3, 5, 7, . . . , 2b − 1 are all non-divisors of 2b. Thus
1, 3, 5, . . . , 2b − 3 are all options, with corresponding nim-values
0, 1, 2, . . . 2b−1 − 2. Since 2b − 2 and 2b − 1 are not options, the lemma
above implies that 2b−1 − 2 is the largest nim-value of an option of 2b
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A lower bound

Lemma

SG(n) ≥ n−2
4 for all n.

Proof.

This is already established for odd n.
Now let n = 2mk , where k is odd and m ≥ 2. Then
n − (k + 2), n − (k + 4), . . . , 1 are all options of n, with nim-values
1
2(n − k − 3), 12(n − k − 5), . . . , 0, respectively. Thus

SG(n) ≥ 1

2
(n − k − 1) ≥ 1

2

(
n − n

4
− 1

)
>

1

2

(n
2
− 1

)
=

n − 2

4

Next if n = 2k , where k is odd, then this talk is only 15 minutes

Thotsaporn “Aek” Thanatipanonda Saliquant 6 / 13



A lower bound

Lemma

SG(n) ≥ n−2
4 for all n.

In fact, this lower bound is attained infinitely often:

Lemma

If p is prime and p ≡ 5 mod 6, then SG(2p) = p−1
2 = 2p−2

4 .
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The key lemma

To give a flavor of later proofs, we show how to obtain what turned out to
be an often used lemma.

Lemma

If SG(2n) = n − k , then 2k − 1 | n.

Proof.

Suppose SG(2n) = n − k . Then 2n has no option of nim-value n − k .
Since SG(2n − 2k + 1) = n − k , it is not an option. In other words,
2k − 1 | 2n and hence 2k − 1 | n.
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Fundamental Theorem of saliquant

Recall:

Lemma

SG(2b) = 2b−1 − 1

Which then extends similarly to:

Lemma

Let b ≥ 1. Then SG((2a+ 1)2b) = (2a+ 1)2b−1 − a− 1 for a = 0, 1, 2, 4.

(and whose proofs fails for a = 3)

But it turns out that, using the key lemma from before, we can obtain a
fully general formula....
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Fundamental Theorem of saliquant

Lemma

Let b ≥ 1. Then SG((2a+ 1)2b) = (2a+ 1)2b−1 − a− 1 for a = 0, 1, 2, 4.

Theorem

For all a ≥ 0, b ≥ 1,

SG
(
(2a+ 1)2b

)
=

m

2m + 1

(
(2a+ 1)2b − 1

)
+

1

2m + 1

(
(2a+ 1)2b−1 − a− 1

)
= (2a+ 1)2b−1 − 1

2

(
2a+ 1

2m + 1
+ 1

)
for some non negative integer m. Thus
SG

(
(2a+ 1)2b

)
= (2a+ 1)2b−1 − d+1

2 , where d is a factor of 2a+ 1.
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The distribution

Let f (a, b,m) = SG
(
(2a+ 1)2b

)
where m is chosen as in the fundamental

theorem of Saliquant so that

SG
(
(2a+ 1)2b

)
= (2a+ 1)2b−1 − 1

2

(
2a+ 1

2m + 1
+ 1

)
.

SG(2(2a+ 1)) density SG(4(2a+ 1)) density SG(8(2a+ 1)) density
m = f (a, 1,m) (a ≤ 5000) = f (a, 2,m) (a ≤ 2000) = f (a, 3,m) (a ≤ 2000)

0 a (B) 0.532 3a+ 1 (C) 0.561 7a+ 3 (E) 0.540

1
5a+ 1

3
(D) 0.026

11a+ 4

3
0.056

23a+ 10

3
0.090

2
9a+ 2

5
0.037

19a+ 7

5
0.044

39a+ 17

5
0.050

3
13a+ 3

7
0.061

27a+ 10

7
0.049

55a+ 24

7
0.046

4
17a+ 4

9
0.022

35a+ 13

9
0.030

71a+ 31

9
0.015
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The distribution

The first 5000 nim-values of saliquant. The slopes of the labelled lines are (A)
1
2 , (B)

1
4 , (C)

3
8 , (D) 5

12 , (E)
7
16
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Thanks!
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Jaroslav Nešeťril and Aaron Robertson, Berlin, Boston: De Gruyter,
2022, pp. 245-280.
https://doi.org/10.1515/9783110755411-014

Paul Ellis, Jason Shi, Thotsaporn Thanatipanonda, and Andrew Tu,
“Two Games on Arithmetic Functions: SALIQUANT and
NONTOTIENT” Discrete Math. Lett. 12 (2023) 209–216.
https://doi.org/10.47443/dml.2023.154

Thotsaporn “Aek” Thanatipanonda Saliquant 13 / 13

http://www.thotsaporn.com
https://doi.org/10.1515/9783110755411-014
https://doi.org/10.47443/dml.2023.154

