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Abstract In the classical coupon collector’s problem, every box of breakfast cereal contains one

coupon from a collection of n distinct coupons, each equally likely to appear. The goal is to find the

expected number of boxes a player needs to purchase to complete the whole collection. In this work,

the authors extend the classical problem to k players who compete with one another to be the first to

collect the whole collection. The authors find the expected numbers of boxes required for the slowest

and fastest players to finish the game. The odds of a particular player being the slowest or fastest

player will also be touched upon. Using the law of total expectation, the solutions will be discussed

from both the tractable recurrence relation as well as the probability point of views.

Keywords Coupon collector’s problem, fastest player, multiple players, slowest player.

1 Prologue

The coupon collector’s problem is a classical mathematics problem that shows up in a

number of courses, from probability theory, simulations, programming, to name a few. The

classic version of the problem can be described as follows.

“You buy cereals in order to collect coupons that come with it. The upcoming collection has

n collectible coupons. Each cereal box contains one coupon. Assume that every type of coupons

is equally likely to appear. What is the expected number of boxes you need to buy until you have

a complete set of n coupons?”

By recalling the mean of the geometric distribution, the answer to the well-known problem

above is E [X ] = nH (n), where H (n) is the n-th harmonic number (see for example [1, p.

225]). An approximate solution to the coupon collector’s problem is

E [X ] ≈ n log n + γn +
1
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where γ ≈ 0.5772156649 is the Euler-Mascheroni constant.

The problem has been extended to a scenario where the player has to collect multiple sets

of coupons. This problem, known as the double dixie cup problem, was solved by Newman

and Shepp[2] in 1960. Their results showed that the expected number of boxes needed to

complete m sets of coupons is n (log n + (m − 1) log log n + O(1))[2]. In [3], Zeilberger found

the generating function for the expected number of types of cards of which the player has

exactly i copies at the end. The note [4] gave an extensive review on approaches for solving

the classical problem, and established some interesting results regarding multiple collections.

Generalization of the problem to a two-player game has also been studied previously. For

example, the probability that the faster player was never behind at any intermediate stage of

the play has been investigated in [5]. In the coupon collector’s problem with group drawings[6],

the player does not select coupons one at a time; instead, they select them in batches of a fixed

size. When the batch size is 1, the problem reduces to the classical coupon collector’s problem.

Previous studies on group drawings have not explored the concept of the slowest/fastest player,

a consideration central to our work.

Contributions In this work, we extend the classical coupon collector’s problem to k pla-

yers who compete with one another in collecting the coupons. Notably, our main theorem finds

the expected number of boxes required for the slowest player to collect the whole collection of n

coupons. We further investigate the problem from a probability point of view, which allows us

to provide full insight into the recurrence relation and obtain the leading term of the solution.

The Maple code, implementing the program to obtain results for general n, is provided at

https://thotsaporn.com/Coupon.txt.

1.1 A Two-Player Scenario: The Slower One

As a warm up, we consider a generalized version of the expected maximum time for two

players who are still missing s and t coupons, respectively. To be more precise, given 0 ≤ s, t ≤

n, let X1(s) and X2(t) be random variables representing the number of boxes the first player

(who are still missing s coupons) and the second player (missing t coupons) need to open, until

they each collect all n coupons. Then,

M (s, t) := E [max{X1(s), X2(t)}]

is the expected number of boxes required for the slower player to collect a complete set of n

coupons.

Using the law of total expectation, conditioning on whether a player found a new coupon

type in the next box or not, we can write a recurrence relation:

M (s, t) =

(
s

n

)(
1 −

t

n

)
M (s − 1, t) the first player (found a new coupon)

+

(
1 −

s

n

)(
t

n

)
M (s, t − 1) the second player

+

(
s

n
·

t

n

)
M (s − 1, t − 1) both
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+
(
1 −

s

n

)(
1 −

t

n

)
M (s, t) neither

+ 1 (1 more box has been opened), (1)

with the initial condition M(0, 0) = 0 and M(s, t) = 0 if s or t < 0.

For the two-player scenario, the recurrence relation takes a vector argument [s, t]. The initial

condition M(0, 0) = 0 means that the game has ended since both players completed the whole

set of coupons. Of course, we will not consider the case when one of the arguments s or t is

negative, so we assign a zero value whenever this happens.

1.2 A One-Player Scenario

The above recurrence can be simplified to get a recurrence for the classical one-player sce-

nario:

M (s) =

(
s

n

)
M (s − 1) the player found a new coupon

+
(
1 −

s

n

)
M (s) the player did not find a new coupon

+ 1 (1 more box has been opened),

with the initial condition M(0) = 0 and M(s) = 0 if s < 0. The reader can quickly verify

that M(s) = nH(s) indeed satisfies this recurrence together with the initial condition given,

consistent with the established result of the classical coupon collector’s problem.

Our goal is to generalize the recurrence (1) to k > 2 players and come up with a general

strategy for solving it. Before proceeding to a more detailed explanation, let us end this section

with the main theorem of this paper.

Theorem 1.1 Let M (s1, s2, · · · , sk) := E [max{X1(s1), · · · , Xk(sk)}] be the expected

number of boxes required for the slowest player to collect all n coupons. Then,

M (s1, s2, · · · , sk) = nH(S) −
(H(S) − 1)

∑
i<j sisj

S(S − 1)
+ O

(
1

n

)
, where S =

k∑

i=1

si.

In the next section, we will introduce several important tools and concepts along the way

during the course of proving the theorem.

2 Proof of Theorem 1.1

We first give an algebraic proof of Theorem 1.1, and then in the next section we will

provide an alternative proof (from the probability view point) for the leading term, which gives

additional insight into the recurrence and the obtained solution.

2.1 Recurrence Relation for the Slowest Player

We have seen that the recurrence for two players was set up after each player has opened

one more box, and checked whether or not they found a new coupon. Suppose now that there

are k players, where player i is still missing si coupons. The same idea is applied to obtain
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a recurrence relation for the number of boxes required for the slowest player in the k-player

scenario.

M (s1, s2, · · · , sk) =
∑

I⊆{1,2,··· ,k}



∏

j∈I

sj

n





∏

j 6∈I

(
1 −

sj

n

)

M (VI)

︸ ︷︷ ︸
players in I found a new coupon

+1, (2)

with the initial condition M(0, · · · , 0) = 0 and M(s1, s2, · · · , sk) = 0 if at least one of si < 0.

The meaning of the notation in (2) is as follows. Let I be the set of index (possibly empty)

of the players who found a new coupon. For each I, the probability that this event happens

is [
∏

j∈I

sj

n
][
∏

j 6∈I

(
1 −

sj

n

)
]. VI represents the updated vector argument after the players in I

found a new coupon, that is,

VI := [s1 − δI(1), s2 − δI(2), · · · , sk − δI(k)],

where δI(j) = 1 if j ∈ I and 0 otherwise. In particular, we write V{}, when no players found a

new coupon, and V{j} when only the player j found a new coupon.

2.2 Solutions via Difference Equations

To solve the recurrence (2) for the first two leading terms, we shall reformulate the solution

as a difference equation. First, we expand out (2) to get

M (s1, s2, · · · , sk) =1 +

k∏

j=1

(
1 −

sj

n

)
M (s1, s2, · · · , sk)

+

k∑

j=1

sj

n



∏

i6=j

(
1 −

si

n

)
M (s1, · · · , sj − 1, · · · , sk) (3)

+
∑

i<j

sisj

n2



∏

l 6∈{i,j}

(
1 −

sl

n

)
M (s1, · · · , si − 1, · · · , sj − 1, · · · , sk) + · · · .

The coefficients of this recurrence indicate that the solution must be in the form:

M (s1, s2, · · · , sk) = nA1 + A0 +
1

n
A−1 +

1

n2
A−2 + · · · , (4)

where Ai, i ≤ 1 is a function of s1, s2, · · · , sk.

Having a solution written in the form (4), the proof of Theorem 1.1 boils down to the problem

of identifying A1 and A0 (the coefficients of the first two leading terms of the solution). This

also explains the remainder term O
(

1
n

)
in the theorem. Note that the initial conditions, derived

from the one-player scenario, are given by A1(s, 0, 0, · · · , 0) = H(s) and A0(s, 0, 0, · · · , 0) = 0.

2.3 Setting up Difference Equations

To set up a difference equation for A1, plug the assumed form (4) into (3) and equate the

resulting constant terms (which correspond to the leading term) on both sides of (3):

A0 = 1 + A0 −

k∑

j=1

sj

n
nA1(V{}) +

k∑

j=1

sj

n
nA1(V{j}).
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For simplicity of notation, we will occasionally omit the full vector argument V{} = [s1, s2, · · · ,

sk] of Ai when there is no ambiguity.

Simplifying the above equation, we obtain the difference equation of A1:

k∑

j=1

sj

(
A1(V{}) − A1(V{j})

)
= 1, (5)

along with the initial condition A1(s, 0, 0, · · · , 0) = H(s). Note that (5) is a first-order difference

equation as V{} = [s1, s2, · · · , sk] and V{j} = [s1, s2, · · · , sj − 1, · · · , sk]. Although we will soon

explain how we come up with the solution, the reader may quickly check that A1(V{}) = H(S),

where S =
∑k

i=1 si, satisfies the difference equation (5) and the initial condition.

Next, we find a difference equation of A0. After plugging in (4), we equate the coefficients

of
1

n
(which is the second leading term) on both sides of (3):

1

n
A−1 = −

∑k

j=1 sj

n
A0 +

1

n
A−1 +

∑

i<j

sisj

n2
nA1

+

∑k

j=1 sj

n
A0(V{j}) −

∑

i<j

sisj

n2
nA1(V{i}) −

∑

i<j

sisj

n2
nA1(V{j}) +

∑

i<j

sisj

n2
nA1(V{i,j}).

Simplifying the above equation, we obtain the difference equation of A0:

k∑

j=1

sj ·
(
A0(V{}) − A0(V{j})

)
=
∑

i<j

sisj ·
(
A1(V{}) − A1(V{i}) − A1(V{j}) + A1(V{i,j})

)
.

We can further simplify the above equation by substituting A1(V{}) = H(S), and the

difference equation of A0 becomes

k∑

j=1

sj ·
(
A0(V{}) − A0(V{j})

)
=
∑

i<j

sisj

(
1

S
−

1

S − 1

)
, (6)

together with the initial condition A0(s, 0, 0, · · · , 0) = 0. This condition is due to the absence

of the other terms except the leading term, nH(s), in the solution of the classical one-player

scenario. Again, (6) is a first-order difference equation.

2.4 Solving Difference Equations

The difference equations (5) and (6) that we are dealing with are a discrete version of the

first order linear partial differential equations. In particular, both difference equations take the

following form:

x1
∂u

∂x1
+ x2

∂u

∂x2
+ · · · + xk

∂u

∂xk

= f(x1, x2, · · · , xk),

in the first quadrant (xi > 0).

We digress momentarily to discuss the following proposition which gives a solution to a new

family of PDEs, and will be used to come up with a “good guess” (solution) for our difference

equations.
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Proposition 2.1 Let M, N ≥ 0 and P be a multivariate polynomial where the degree of

each monomial is N . Let X =
∑k

j=1 xj. Then, the solution of

k∑

j=1

xj

∂u

∂xj

= (lnX)
M

·
P (x1, x2, · · · , xk)

XN
(7)

is

u(x1, x2, · · · , xk) =

(
(lnX)M+1

M + 1
+ C

)
·
P (x1, x2, · · · , xk)

XN
,

for any constant C.

Proof We solve this by the method of characteristics. Suppose u = f(x1, x2, · · · , xk) is a

differentiable function of x1, · · · , xk, where each xi is parameterized as a function of t. Then,

by the chain rule, u is a differentiable function of t and

du

dt
=

k∑

i=1

∂f

∂xi

dxi

dt
.

In order to find the solution, we solve

dxi

dt
= xi, 1 ≤ i ≤ k, and

du

dt
= (ln X)M P (x1, x2, · · · , xk)

XN
.

Then, xi = cie
t where ci are constants. Substituting this into du

dt
, we get

du

dt
=

(
ln

(
∑

i

cie
t

))M

P (c1, c2, · · · , ck)

(
∑

i ci)
N

.

The last equality holds because P is a multivariate polynomial where the degree of each mono-

mial is N . The final step is to integrate both sides of the differential equation to find:

u =
P (c1, c2, · · · , ck)

(
∑

i ci)N

∫ (
ln

(
∑

i

cie
t

))M

dt

=
P (c1, c2, · · · , ck)

(
∑

i ci)N

(
(ln (

∑
i cie

t))
M+1

M + 1
+ C

)

=
P (x1, x2, · · · , xk)

XN

(
(lnX)M+1

M + 1
+ C

)
, for any constant C.

The proof is completed.

We will now make use of a more readily available solution to this family of PDEs to obtain

a solution for our difference equations (5) and (6).

For (5), after comparing the target (5) to the PDE (7), we apply the proposition with

M = 0 and N = 0. The obtained solution u = ln(X) + C reminds us of the Harmonic number

in a discrete version. Thus, our guess is Ã1(s1, s2, · · · , sk) = H(S) + C. Of course, we have

to verify that this solution satisfies (5), which obviously does. Moreover, the initial condition

A1(0, 0, · · · , 0) = 0 implies that the constant C = 0.
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Therefore, the particular solution to (5), which is the coefficient of our leading term solution,

is

A1(s1, s2, · · · , sk) = H(S).

The target (6) suggests us to apply the proposition with M = 0 and N = 2, which gives the

solution u = − (ln (X) + C)

∑
i<j xixj

X2
. Thus, a guess for the discrete analogue is

Ã0(s1, s2, · · · , sk) = −
(H(S) + C)

∑
i<j sisj

S(S − 1)
. (8)

Notice the difference between the denominators S(S − 1) and X2 first arising in the target (6)

and the PDE (7), and later appearing again in their solutions.

In order to verify that this guess is indeed the solution of (6), there is one tricky calculation,

which will be dealt with in the next lemma.

Lemma 2.2 Assume Ã0(s1, s2, · · · , sk) as in (8). Then

k∑

j=1

sjÃ0(V{j}) = −
H(S − 1) + C

(S − 1)
·
∑

i<j

sisj .

Proof Consider vectors V{} = [s1, s2, · · · , sk] and V{j} = [s′1, s
′
2, · · · , s′k] = [s1, s2, · · · , sj −

1, · · · , sk]. Then

k∑

j=1

sjÃ0(V{j}) =

k∑

j=1

sj

[
−

H(S − 1) + C

(S − 1)(S − 2)
·
∑

i<l

s′is
′
l

]
= −

H(S − 1) + C

(S − 1)(S − 2)
·

k∑

j=1

sj

∑

i<l

s′is
′
l

and
∑

i<l

s′is
′
l =

∑

i<l

sisl −
k∑

i=1

si + sj .

Therefore,
k∑

j=1

sj

∑

i<l

s′is
′
l = S

∑

i<l

sisl − S2 +

k∑

j=1

s2
j = (S − 2)

∑

i<l

sisl

and the result is immediate.

We are now ready to verify the solution of (6). Substitute our guess (8) into the l.h.s. of (6),

and use the lemma to obtain

k∑

j=1

sj

(
Ã0(V{}) − Ã0(V{j})

)
= −

(H(S) + C)
∑

i<j sisj

S − 1
+

(H(S − 1) + C)
∑

i<j sisj

(S − 1)

=

∑
i<j sisj

S − 1
(H(S − 1) − H(S)) =

∑

i<j

sisj

(
1

S
−

1

S − 1

)

and so (8) is indeed a solution of (6).
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The unique value of C can be determined by making sure that the initial condition A0(1, 0,

· · · , 0) = 0 is satisfied. In particular, in order to make this point a removable singularity, it is

necessary that H(1) + C = 0, and so C = −1.

Thus, the particular solution of (6), which is the coefficient of our second leading term

solution, is

A0(s1, s2, · · · , sk) = −
(H(S) − 1)

∑
i<j sisj

S(S − 1)
.

Having obtained the closed-form formula for A1 and A0, Theorem 1.1 has been verified.

The next corollary, which is an immediate corollary of Theorem 1.1, provides the solution

to our original problem when all the k players start with empty hands.

Corollary 2.3

M (n, n, · · · , n) ≈ nH(kn) −
(H(kn) − 1)(k − 1)n

2(kn− 1)
.

2.5 Remarks on the Remainder

The formula given in Theorem 1.1 becomes more precise as n increases. For example, with

n = 30, the exact value of M(30, 30, 30) computed numerically from (2) is 151.0692567, while

Theorem 1.1 gives 151.1009707. The general formula for M(30, 30, 30) computed from (2) with

symbolic n is

M(30, 30, 30) =5.082570603n− 1.376147394−
0.9078106927

n
−

1.231342610

n2

−
2.159152821

n3
−

4.180289796

n4
−

7.669304559

n5
−

7.488122252

n6
+ · · · .

3 Insight into the Leading Term via Probability

In this section, we give an alternative proof for the leading term solution from the probability

point of view.

Consider the coupon collector’s problem in a continuous-time setting. Start with one player,

who is missing s coupons. Through the concept of interarrival times of an inhomogeneous

counting process, let W1 ∼ exp(λ1 = s
n
) be the time of the first arrival of the coupon. Similarly,

let Wi ∼ exp(λi = s−i+1
n

) be the interarrival time (elapsed time) between the (i− 1)th and the

ith arrivals, for i = 2, · · · , s. It follows that the expected completion time for this particular

player satisfies

E[X(s)] = E

[
s∑

i=1

Wi

]
=

s∑

i=1

1

λi

=

s∑

i=1

n

s − i + 1
= nH(s).

The concept of interarrival times can be extended to find the expected maximum time

for the k coupon collectors’ problem. Assume that player j is still missing sj coupons. Let

T1 be the time of the first arrival of a coupon, regardless of which player finds it. Recall

a classical property that the minimum of independent exponential random variables is again

exponential with the rate parameter equals to the sum of the rates [7, Eq.5.6, p.302]. Then,
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T1 ∼ exp(λ1 = S
n
), where S = s1 + s2 + · · · + sk. In addition, let Ti be the interarrival times

between the (i − 1)th and the ith arrivals of the coupon, regardless of which player finds the

coupon. By the independence of interarrival times (see [7, Eq.5.2,5.3, p.294]) and the player

who finds the coupon, Ti ∼ exp(λi = S−i+1
n

). Finally, the completion time of the slowest player

is simply

E[max{X1(s1), · · · , Xk(sk)}] = E

[
S∑

i=1

Ti

]
=

S∑

i=1

1

λi

=

S∑

i=1

n

S − i + 1
= nH(S). (9)

Here, things simplify as two events cannot occur at the same time, and it does not matter

which player finds a next new coupon as the rate parameter of the counting process is based

solely on the total number of coupons still missing at that time.

One can write a recurrence relation for the continuous-time setting as

M (s1, s2, · · · , sk) =

k∑

j=1

(sj

S

)
M(s1, s2, · · · , sj − 1, · · · , sk) +

n

S
, (10)

where S =
∑k

i=1 si.

An interpretation of the recurrence relation is now given. Since the rate parameter of a new

arrival is λ = S
n
, the last term n

S
represents the mean arrival time of a new coupon (regardless

of which player finds it). Moreover, by recalling another classical property of the exponential

distribution concerning the probability of jth random variable being smallest among others (see

[7, Eq.5.5, p.302]), the term
sj

S
is the probability that player j is the one who finds the next

new coupon, as one would expect. While no such explanations can be given when we solved

the difference equations in the discrete-time setting, the continuous-time setting allows us to

gain full insight into the recurrence relation and the solution we already obtained.

Last but not least, the fact that the solution (9) coincides with the leading term solution

of the discrete-time recurrence is not a mere happenstance. In fact, the recurrence relation for

the leading term solution can be obtained by dropping those terms in (2) which correspond to

“multiple players finding a new coupon in the next box”. As a result, we arrive at precisely the

same recurrence (10).

4 Miscellaneous Topics

The final section contains a miscellaneous selection of results related to the k coupon col-

lectors’ problem.

4.1 The Fastest Player

The expected number of boxes required for the fastest player to complete the whole collection

turns out to be a corollary of our main theorem.

Corollary 4.1 The expected number of boxes required for the fastest player to collect all

n coupons, E [min{X1(s1), · · · , Xk(sk)}], is given by
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k∑

i=1

M(si) −
∑

i<j

M(si, sj) +
∑

i<j<l

M(si, sj , sl) + · · · + (−1)k−1M (s1, s2, · · · , sk)

=n




k∑

i=1

H(si) −
∑

i<j

H(si + sj) +
∑

i<j<l

H(si + sj + sl) + · · · + (−1)k−1H

(
k∑

i=1

si

)
+ O(1).

Proof Retaining only the leading term, the result follows immediately from the maximum-

minimum identity :

min{X1, · · · , Xk} =

k∑

i=1

Xi −
∑

i<j

max{Xi, Xj} +
∑

i<j<l

max{Xi, Xj , Xl}

+ · · · + (−1)k−1 max{X1, · · · , Xk},

and the linearity of expectation. The remainder is O(1) as we keep only the leading term in

the solution.

Figure 1 shows the graphs of the expected numbers of boxes required for the slowest player

M(n, n, · · · , n) and fastest player m(n, n, · · · , n) to complete the whole collection of n coupons,

where the number of players ranges from k = 1, 2, · · · , 40.

Figure 1 The expected number of boxes required for the slowest (top 40 lines) and fastest

players (bottom 40 lines) to complete the whole collection of n coupons. Each line

represents a different number of players, ranging from k = 1 to k = 40. The darkest

line in the middle is a separator line corresponding to k = 1 player, for which the

slowest and fastest players are the same person

4.2 Probability of Being the Slowest Player

We start with the probability of being the slowest player. Let P1 (s1, s2, · · · , sk) be the

probability that the first player is the last person to complete the whole collection, i.e., X1 (s1) =

max{X1(s1), X2(s2), · · · , Xk(sk)}. Then, we can write a recurrence

P1 (s1, s2, · · · , sk) =
∑

I⊆{1,2,··· ,k}



∏

j∈I

sj

n





∏

j 6∈I

(
1 −

sj

n

)

P1 (VI)

︸ ︷︷ ︸
players in I found a new coupon

, (11)
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with the initial conditions P1(s1, 0, · · · , 0) = 1 if s1 ≥ 0, and P1(0, s2, · · · , sk) = 0 if some of

si > 0, and P1(s1, s2, · · · , sk) = 0 if at least one of si < 0.

The absence of +1 term in this recurrence as compared to (2) leads to the solution of the

form:

P1 (s1, s2, · · · , sk) = B0 +
1

n
B−1 +

1

n2
B−2 + · · · , (12)

where Bi, i ≤ 0 is a function of s1, s2, · · · , sk.

The next proposition finds the leading term solution B0. Having the solution written in the

form (12) explains the remainder term O
(

1
n

)
in the proposition.

Proposition 4.2 Let P1 (s1, s2, · · · , sk) be the probability that the first player is slowest

among the k players to collect the whole set of n coupons. Then,

P1 (s1, s2, · · · , sk) =
s1∑k

i=1 si

+ O

(
1

n

)
.

Proof Following the same procedure as in the proof of Theorem 1.1, one may prove this

statement by means of an algebraic recurrence relation. Nevertheless, we will alternatively

prove the leading term solution using a combinatorial interpretation through the continuous-

time framework. The number of combinations where the first player finishes last (i.e., the

last coupon is found by the first player) is
(
s1−1+s2+s3+···+sk

s1−1,s2,s3,··· ,sk

)
, and the probability of each

combination is s1!s2!s3!···sk!
(
∑

k
i=1

si)!
(following from our discussion in a continuous-time setting that

sj∑
k
i=1

si
is the probability that player j is the one who finds the next new coupon.

Thus,

P (the first player is the slowest) =
s1!s2!s3! · · · sk!

(
∑k

i=1 si)!
·

(
s1 − 1 + s2 + s3 + · · · + sk

s1 − 1, s2, s3, · · · , sk

)

=
s1∑k

i=1 si

.

This completes the proof.

4.3 Remarks on the Remainder of Probability

The formula given in Proposition 4.2 is more precise as n increases. For example, with n =

50, the exact value of P1(24, 22, 14) computed numerically from the recurrence is 0.4039306738,

while Proposition 4.2 gives 0.40. The general formula for P1(24, 22, 14) computed from the

recurrence with symbolic n is

P1(24, 22, 14) =0.4 +
0.1904262018

n
+

0.2926113116

n2
+

0.6072298683

n3

+
1.461461046

n4
+

3.965909505

n5
+ · · · .

To conclude this work, the probability of being the fastest player, whose result is a corollary

to Proposition 4.2, will now be discussed.
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Corollary 4.3 Let Q1 (s1, s2, · · · , sk) denote the probability that the first player is the

fastest player to finish, i.e. X1 (s1) = min{X1(s1), X2(s2), · · · , Xk(sk)}. Then

Q1 (s1, s2, · · · , sk) =1 −
∑

1<i

s1

s1 + si

+
∑

1<i<j

s1

s1 + si + sj

−
∑

1<i<j<l

s1

s1 + si + sj + sl

+ · · · + (−1)k−1 s1

s1 + · · · + sk

+ O

(
1

n

)
.

Proof The proof is a straightforward application of the inclusion-exclusion principle and

Proposition 4.2.
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